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1 Some combinatorics

1.1 Changing money, stamping letters and an ingenious idee of
Leonhard Euler

In the following example, we demonstrate an idea that goes back to L. Euler1. The problem: A
letter has to be stamped. The postage is 85 cents and we have the following stock of stamps:

• 6 stamps at 1 Ct each,

• 5 stamps at 5 Ct each,

• 3 stamps at 10 Ct each,

• 2 stamps at 20 Ct each,

• 1 stamp at 50 Ct each

In how many ways can the letter be stamped, if there is no difference between the stamps of
the same value (and if it does not matter where on the letter the stamps are affixed).

With a little (systematic) trial and error, one can get the following 14 possibilities2:

1: 50+20+10+5
2: 50+20+10+1+1+1+1+1
3: 50+20 +5+5+5
4: 50+20+5+5+1+1+1+1+1
5: 50+10+10+10+5
6: 50+10+10+10+1+1+1+1+1
7: 50+10+10+5+5+5
8: 50+10+10+5+5+1+1+1+1+1
9: 50+10+5+5+5+5

10: 50+10+5+5+5+5+1+1+1+1+1
11: 20+20+10+10+10+5+5+5
12: 20+20+10+10+10+5+5+1+1+1+1+1
13: 20+20+10+10+5+5+5+5+5
14: 20+20+10+10+5+5+5+5+1+1+1+1+1

These are exactly the possibilities to sum up the number 85 with the given stock. With regard
to the general procedure, we start by coding the stampings. Let the stamping: a ones, b fives,
c tens, d twenties and e fifty stamps be denoted by the term3 4

(X1)a · (X5)b · (X10)c · (X20)d · (X50)e (1)

Obviously, concerning (1) we have

X1·a ·X5·b ·X10·c ·X20·d ·X50·e = Xa·1+b·5+c·10+d·20+e·50 = X85

with a · 1 + b · 5 + c · 10 + d · 20 + e · 50 = 85

1Leonhard Euler, Swiss mathematician, 1707–1783
2Sorting criterion by the “greedy strategy” large values first.
3Even if this coding may seem strange at first, it is in any case unambiguous and will prove extremely useful

in connection with polynomial calculations.
4It is self-evident that the stamps in the stock were only used in so far as it made sense from the point of

view of the problem.
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The stock of stamps is coded in the following way:

6 stamps at 1 Ct ←→ (1 + X + X2 + X3 + X4 + X5 + X6)
5 stamps at 5 Ct ←→ (1 + X5 + (X5)2 + (X5)3 + (X5)4 + (X5)5)
3 stamps at 10 Ct ←→ (1 + X10 + (X10)2 + (X10)3)
2 stamps at 20 Ct ←→ (1 + X20 + (X20)2)
1 stamp at 50 Ct ←→ (1 + X50)

(2)

Euler was a virtuoso at calculating with polynomials. He formed the following expression to
solve the stamping problem: (

1 + X1 + X2 + X3 + X4 + X5 + X6
)
·(

1 + X5 + X5·2 + X5·3 + X5·4 + X5·5) ·(
1 + X10 + X10·2 + X10·3) ·(
1 + X20 + X20·2) ·(
1 + X50

) (3)

In order to expand the expression (3), one has to take one summand from each of the five
parenthesized expressions, form their product and add up all the resulting terms5. This results
in the expression:

1 + X + X2 + X3 + X4 + 2 ·X5 + 2 ·X6 + X7 + X8 + X9 + 3 ·X10

+ 3 ·X11 + 2 ·X12 + 2 ·X13 + 2 ·X14 + 4 ·X15 + 4 ·X16 + 2 ·X17 + 2 ·X18 + 2 ·X19 + 6 ·X20

+ 6 ·X21 + 4 ·X22 + 4 ·X23 + 4 ·X24 + 8 ·X25 + 8 ·X26 + 4 ·X27 + 4 ·X28 + 4 ·X29 + 9 ·X30

+ 9 ·X31 + 5 ·X32 + 5 ·X33 + 5 ·X34 + 10 ·X35 + 10 ·X36 + 5 ·X37 + 5 ·X38 + 5 ·X39 + 11 ·X40

+ 11 ·X41 + 6 ·X42 + 6 ·X43 + 6 ·X44 + 12 ·X45 + 12 ·X46 + 6 ·X47 + 6 ·X48 + 6 ·X49 + 13 ·X50

+ 13 ·X51 + 7 ·X52 + 7 ·X53 + 7 ·X54 + 14 ·X55 + 14 ·X56 + 7 ·X57 + 7 ·X58 + 7 ·X59 + 14 ·X60

+ 14 ·X61 + 7 ·X62 + 7 ·X63 + 7 ·X64 + 14 ·X65 + 14 ·X66 + 7 ·X67 + 7 ·X68 + 7 ·X69 + 15 ·X70

+ 15 ·X71 + 8 ·X72 + 8 ·X73 + 8 ·X74 + 16 ·X75 + 16 ·X76 + 8 ·X77 + 8 ·X78 + 8 ·X79 + 15 ·X80

+ 15 ·X81 + 7 ·X82 + 7 ·X83 + 7 ·X84 + 14 ·X85 + 14 ·X86 + 7 ·X87 + 7 ·X88 + 7 ·X89 + 14 ·X90

. . . + 3 ·X141 + X142 + X143 + X144 + 2 ·X145 + 2 ·X146 + X147 + X148 + X149 + X150 + X151

(4)

The coefficient 14 in front of X85 is equal to the number of possibilities of building all combi-
nations for Xr ·Xs ·X t ·Xu ·Xv from the expression (3) such that r + s + t + u + v = 85. In
greater detail, the coefficient 14 is obtained as follows:

5Nowadays, a computer algebra system is usually used for this. The corresponding command for multipli-
cation in Maxima is e.g. “expand”
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1 : (X1)0 · (X5)1 · (X10)1 · (X20)1 · (X50)1 = 1 ·X5 ·X10 ·X20 ·X50

2 : (X1)5 · (X5)0 · (X10)1 · (X20)1 · (X50)1 = X5 · 1 ·X10 ·X20 ·X50

3 : (X1)0 · (X5)3 · (X10)0 · (X20)1 · (X50)1 = 1 ·X15 · 1 ·X20 ·X50

4 : (X1)5 · (X5)2 · (X10)0 · (X20)1 · (X50)1 = X5 ·X10 · 1 ·X20 ·X50

5 : (X1)0 · (X5)1 · (X10)3 · (X20)0 · (X50)1 = 1 ·X5 ·X30 · 1 ·X50

6 : (X1)5 · (X5)0 · (X10)3 · (X20)0 · (X50)1 = X5 · 1 ·X30 · 1 ·X50

7 : (X1)0 · (X5)3 · (X10)2 · (X20)0 · (X50)1 = 1 ·X15 ·X20 · 1 ·X50

8 : (X1)5 · (X5)2 · (X10)2 · (X20)0 · (X50)1 = X5 ·X10 ·X20 · 1 ·X50

9 : (X1)0 · (X5)5 · (X10)1 · (X20)0 · (X50)1 = 1 ·X25 ·X10 · 1 ·X50

10 : (X1)5 · (X5)4 · (X10)1 · (X20)0 · (X50)1 = X5 ·X20 ·X10 · 1 ·X50

11 : (X1)0 · (X5)3 · (X10)3 · (X20)2 · (X50)0 = 1 ·X15 ·X30 ·X40 · 1
12 : (X1)5 · (X5)2 · (X10)3 · (X20)2 · (X50)0 = X5 ·X10 ·X30 ·X40 · 1
13 : (X1)0 · (X5)5 · (X10)2 · (X20)2 · (X50)0 = 1 ·X25 ·X20 ·X40 · 1
14 : (X1)5 · (X5)4 · (X10)2 · (X20)2 · (X50)0 = X5 ·X20 ·X20 ·X40 · 1

(5)

Table (5) lists all the possibilities of stamping a letter with the stock of stamps given at the
beginning of this text.

Question: What does stamping letters have to do with changing money?

1.1.1 Stamping with distinct stamps

Question (modification of the problem): What if the postage were 8 Ct and if you had exactly
one stamp each of 1 Ct, 2 Ct, 3 Ct, 4 Ct, 5 Ct, 6 Ct, 7 Ct and 8 Ct available?

The analog to expression (3) in this case would be

(1 + X) · (1 + X2) · (1 + X3) · (1 + X4) · (1 + X5) · (1 + X6) · (1 + X7) · (1 + X8) (6)

or in the expanded form

1 + X + X2 + 2X3 + 2X4 + 3X5 + 4X6 + 5X7 + 6X8 + 7X9 + 8X10

+ 9X11 + 10X12 + 11X13 + 12X14 + 13X15 + 13X16 + 13X17 + 14X18 + 13X19 + 13X20

+ 13X21 + 12X22 + 11X23 + 10X24 + 9X25 + 8X26 + 7X27 + 6X28 + 5X29 + 4X30

+ 3X31 + 2X32 + 2X33 + X34 + X35 + X36

(7)

The coefficient of X8 in the expanded form obviously answers the question “How many ways
are there to decompose the number 8 into distinct integer parts?”6

Here are the 6 possibilities (the number 8 itself counts as one of these “decomposition possibil-
ities”):

8 = 7 + 1 = 6 + 2 = 5 + 3 = 5 + 2 + 1 = 4 + 3 + 1 (8)

6Explain in which way the word “different” is relevant in the context of equation (6).
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1.1.2 Stamping with (a limited number of) multiple stamps

If you have two stamps (instead of one) of each kind in the stock, the answer to the last
stamping problem would be the coefficient of X8, i.e. 13, in the following expression:

(1 + X1 + (X1)2) · (1 + X2 + (X2)2) · (1 + X3 + (X3)2) · (1 + X4 + (X4)2)

·(1 + X5 + (X5)2) · (1 + X6 + (X6)2) · (1 + X7 + (X7)2) · (1 + X8 + (X8)2)
(9)

Translated into the language of partitions, this means counting the partitions with at most two
equal parts. Here, they are:

1: [ [8] ]
2: [ [7,1], [6,2], [5,3], [4,4] ]
3: [ [6,1,1], [5,2,1], [4,3,1], [4,2,2], [3,3,2] ]
4: [ [5,1,1,1], [4,2,1,1], [3,3,1,1], [3,2,2,1], [2,2,2,2] ]
5: [ [4,1,1,1,1], [3,2,1,1,1], [2,2,2,1,1] ]
6: [ [3,1,1,1,1,1], [2,2,1,1,1,1] ]
7: [ [2,1,1,1,1,1,1] ]
8: [ [1,1,1,1,1,1,1,1] ]

So, there are 13 cases with at most 2 equal parts. With a maximum of 3 equal parts, the
following 3 are added: [5,1,1,1], [3,2,1,1,1], [2,2,2,1,1].

By Euler’s method, we have to expand the following products
For the case “2 stamps of each kind in the stock”:

P2 = (1 + X1 + (X1)2 ) ·
(1 + X2 + (X2)2 ) ·
(1 + X3 + (X3)2 ) ·
(1 + X4 + (X4)2 ) ·
(1 + X5 + (X5)2 ) ·
(1 + X6 + (X6)2 ) ·
(1 + X7 + (X7)2 ) ·

(1 + X8 + (X8)2 ) )

(10)

and for the case “3 stamps of each kind in the stock”:

P3 = (1 + X1 + (X1)2 + (X1)3 ) ·
(1 + X2 + (X2)2 + (X2)3 ) ·
(1 + X3 + (X3)2 + (X3)3 ) ·
(1 + X4 + (X4)2 + (X4)3 ) ·
(1 + X5 + (X5)2 + (X5)3 ) ·
(1 + X6 + (X6)2 + (X6)3 ) ·
(1 + X7 + (X7)2 + (X7)3 ) ·

(1 + X8 + (X8)2 + (X8)3 ) )

(11)

The coefficients of X8 are: 13 in the case of P2 and 16 in the case of P3.

Exercise: Check the previous assertion, e.g. using a computer algebra system7.

7The corresponding function in Maxima is: coeff(P2, X, 8) resp. coeff(P3, X, 8).
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2 Integer partitions

It should be clear, now, how to proceed: To calculate the number of partitions of n, we have
to expand the expression

Pn = (1 + X1 + (X1)2 + . . . + (X1)n) ·
(1 + X2 + (X2)2 + . . . + (X2)n) · . . .

(1 + (Xj)1 + (Xj)2 + . . . + (Xj)n) · . . .

(1 + (Xn)1 + (Xn)2 + . . . + (Xn)n)

(12)

For answering the problem: “What is the coefficient of X85?” it is irrelevant8 if exponents are
generated which are too large (i.e. greater than 85). These exponents are simply disregarded.

Instead of (12) we can also use the following expression:

P = (1 + X1 + (X1)2 + . . . + (X1)∞) ·
(1 + X2 + (X2)2 + . . . + (X2)∞) · . . .

(1 + (Xj)1 + (Xj)2 + . . . + (Xj)∞) · . . .

(1 + (Xn)1 + (Xn)2 + . . . + (Xn)∞)

(13)

Using the “sum-function” symbol
∑

this can be expressed as:

P =
∞∑

n1=0

(X1)n1 ·
∞∑

n2=0

(X2)n2 · . . . ·
∞∑

nj=0

(Xj)nj · . . . ·
∞∑
nl=0

(Xn)nl (14)

What should this be good for? Well, as we have seen, for formal power series the following
equation holds9:

∞∑
k=0

Y k =
1

1− Y

Therefore, (14) (with X,X2, Xj, . . . , Xn instead of Y ) can be written as:

P =
1

1−X
· 1

1−X2
· . . . · 1

1−Xj
· . . . · 1

1−Xn
(15)

respectively

P =
n∏
j=1

1

1−Xj
(16)

The coefficients of the term (16) can be extracted by application of the Taylor-expansion10 of
this term.

Exercise: Check the case of n = 85 by using the Taylor expansion of (16)

8as for the result . . . not for the runtime
9see: https://jochen-ziegenbalg.github.io/materialien/Manuskripte/Fib-Pot-erzFkt.pdf

10see: https://jochen-ziegenbalg.github.io/materialien/Manuskripte/Fib-Pot-erzFkt.pdf
and https://jochen-ziegenbalg.github.io/materialien/Manuskripte/Partitions-CAS-Maxima.pdf
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2.1 Integer partitions by explicit construction

Repetition: From elementary school we know that 12 = 7 + 5. The right-hand side 7 + 5 of this
equation is called a partition of 12. The numbers 7 and 5 are called the parts of the partition and
since they are integers, this is called an integer partition. In the following text we will, however,
only speak about partitions, because all the partitions we will consider, will be integer partitions.
There are other partitions of 12, like 4+3+2+2+1 or 1+1+1+1+1+1+1+1+1+1+1+1.
For systematic reasons, just 12 is also considered a partition of 12. The number of summands
(or equally, the number of parts), will also be called the length of the partition.

Since it is always a good idea to have some examples at hand, we first give some examples of
“small” and some not quite so small cases.

Examples : Each partition is written as a list – wrapped in brackets.

partitions of 0 : [ ] (the number 0 has no partition)

partitions of 1 : [ 1 ]

partitions of 2 : [ 1, 1 ], [ 2 ]

partitions of 3 : [1, 1, 1 ], [ 1, 2 ], [ 3 ]

partitions of 4 : [ 1, 1, 1, 1 ], [ 1, 1, 2 ], [ 1, 3 ], [ 2, 2 ], [ 4 ]

partitions of 5 : [ 1, 1, 1, 1, 1 ], [ 1, 1, 1, 2 ], [ 1, 1, 3 ], [ 1, 2, 2 ], [ 1, 4 ], [ 2, 3 ], [ 5 ]

partitions of 6 : [ 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 2 ], [ 1, 1, 1, 3 ], [ 1, 1, 2, 2 ], [ 1, 1, 4 ], [ 1, 2, 3 ], [ 1, 5 ],
[ 2, 2, 2 ], [ 2, 4 ], [ 3, 3 ], [ 6 ]

partitions of 7 : [ 1, 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 2 ], [ 1, 1, 1, 1, 3 ], [ 1, 1, 1, 2, 2 ], [ 1, 1, 1, 4 ],
[ 1, 1, 2, 3 ], [ 1, 1, 5 ], [ 1, 2, 2, 2 ], [ 1, 2, 4 ], [ 1, 3, 3 ], [ 1, 6 ], [ 2, 2, 3 ], [ 2, 5 ], [ 3, 4 ],
[ 7 ]

partitions of 8 : [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 2 ], [ 1, 1, 1, 1, 1, 3 ], [ 1, 1, 1, 1, 2, 2 ],
[ 1, 1, 1, 1, 4 ], [ 1, 1, 1, 2, 3 ], [ 1, 1, 1, 5 ], [ 1, 1, 2, 2, 2 ], [ 1, 1, 2, 4 ], [ 1, 1, 3, 3 ],
[ 1, 1, 6 ], [ 1, 2, 2, 3 ], [ 1, 2, 5 ], [ 1, 3, 4 ], [ 1, 7 ], [ 2, 2, 2, 2 ], [ 2, 2, 4 ], [ 2, 3, 3 ],
[ 2, 6 ], [ 3, 5 ], [ 4, 4 ], [ 8 ]

partitions of 9 : [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 1, 2 ], [ 1, 1, 1, 1, 1, 1, 3 ],
[ 1, 1, 1, 1, 1, 2, 2 ], [ 1, 1, 1, 1, 1, 4 ], [ 1, 1, 1, 1, 2, 3 ], [ 1, 1, 1, 1, 5 ], [ 1, 1, 1, 2, 2, 2 ],
[ 1, 1, 1, 2, 4 ], [ 1, 1, 1, 3, 3 ], [ 1, 1, 1, 6 ], [ 1, 1, 2, 2, 3 ], [ 1, 1, 2, 5 ], [ 1, 1, 3, 4 ],
[ 1, 1, 7 ], [ 1, 2, 2, 2, 2 ], [ 1, 2, 2, 4 ], [ 1, 2, 3, 3 ], [ 1, 2, 6 ], [ 1, 3, 5 ], [ 1, 4, 4 ],
[ 1, 8 ], [ 2, 2, 2, 3 ], [ 2, 2, 5 ], [ 2, 3, 4 ], [ 2, 7 ], [ 3, 3, 3 ], [ 3, 6 ], [ 4, 5 ], [ 9 ]

partitions of 10 : [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 2 ], [ 1, 1, 1, 1, 1, 1, 1, 3 ],
[ 1, 1, 1, 1, 1, 1, 2, 2 ], [ 1, 1, 1, 1, 1, 1, 4 ], [ 1, 1, 1, 1, 1, 2, 3 ], [ 1, 1, 1, 1, 1, 5 ],
[ 1, 1, 1, 1, 2, 2, 2 ], [ 1, 1, 1, 1, 2, 4 ], [ 1, 1, 1, 1, 3, 3 ], [ 1, 1, 1, 1, 6 ], [ 1, 1, 1, 2, 2, 3 ],
[ 1, 1, 1, 2, 5 ], [ 1, 1, 1, 3, 4 ], [ 1, 1, 1, 7 ], [ 1, 1, 2, 2, 2, 2 ], [ 1, 1, 2, 2, 4 ], [ 1, 1, 2, 3, 3 ],
[ 1, 1, 2, 6 ], [ 1, 1, 3, 5 ], [ 1, 1, 4, 4 ], [ 1, 1, 8 ], [ 1, 2, 2, 2, 3 ], [ 1, 2, 2, 5 ], [ 1, 2, 3, 4 ],
[ 1, 2, 7 ], [ 1, 3, 3, 3 ], [ 1, 3, 6 ], [ 1, 4, 5 ], [ 1, 9 ], [ 2, 2, 2, 2, 2 ], [ 2, 2, 2, 4 ], [ 2, 2, 3, 3 ],
[ 2, 2, 6 ], [ 2, 3, 5 ], [ 2, 4, 4 ], [ 2, 8 ], [ 3, 3, 4 ], [ 3, 7 ], [ 4, 6 ], [ 5, 5 ], [ 10 ]

In a more structured way of dealing with the problem, we sort the partitions by the number of
parts. By PL(n, k) we denote the list of the partitions of n with exactly k parts11. For n = 8

11As for notation: PL(n) and PL(n, k) return the partitions as lists; P (n) and P (n, k) return the number
of partitions.
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we have:

PL(8, 1) = [[8]] |PL(8, 1) = 1| (17)

PL(8, 2) = [[7, 1], [6, 2], [5, 3], [4, 4]] |PL(8, 2) = 4|
PL(8, 3) = [[6, 1, 1], [5, 2, 1], [4, 3, 1], [4, 2, 2], [3, 3, 2]] |PL(8, 3) = 5|
PL(8, 4) = [[5, 1, 1, 1], [4, 2, 1, 1], [3, 3, 1, 1], [3, 2, 2, 1], [2, 2, 2, 2]] |PL(8, 4) = 5|
PL(8, 5) = [[4, 1, 1, 1, 1], [3, 2, 1, 1, 1], [2, 2, 2, 1, 1]] |PL(8, 5) = 3|
PL(8, 6) = [[3, 1, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1]] |PL(8, 6) = 2|
PL(8, 7) = [[2, 1, 1, 1, 1, 1, 1]] |PL(8, 7) = 1|
PL(8, 8) = [[1, 1, 1, 1, 1, 1, 1, 1]] |PL(8, 8) = 1|

So, for PL(8) (the list of all integer partitions of 8) we have:

PL(8) =
8⋃

k=1

PL(8, k) (18)

Because this is a “disjoint” union, we have |PL(8)| = 22.

2.1.1 An algorithm for generating the partitions of an integer

“What I cannot create, I do not understand.”
Richard Feynman, amerikanischer Physiker,
1918–1988, Nobel Prize 1965

A general strategy of problem solving is to reduce an existing (initially unsolved) problem to
“smaller” cases of the same type. This often leads to “recursive” approaches. In the case of
integer partitions, the solutions for the small cases n = 1, 2, 3 are “visible to the naked eye”;
but for values of n greater than 10 it is advisable to look out for a more systematic strategy
for generating the partitions.

When it comes to an algorithm or a program for generating the partitions we have to decide if
the program is to

1. generate the partitions themselves, or just

2. generate the number of the partitions.

In this article, we will concentrate on the second objective. The first objective is extensively
treated in the “companion” file partitions.wxmx with all programs implemented in the the
open source computeralgebra system Maxima.

For both objectives, recursion will prove extremely helpful.

First, some notation: The functions PL(n) and PL(n, k) will return the partitions as lists ;
P (n) and P (n, k) will return the number of partitions.

Let us take a closer look at a not too small example: PL(n, k) with n = 12 and k = 4.

PL(12, 4) =[ [9, 1, 1, 1], [8, 2, 1, 1], [7, 3, 1, 1], [6, 4, 1, 1], [5, 5, 1, 1], [7, 2, 2, 1], [6, 3, 2, 1], [5, 4, 2, 1],

[5, 3, 3, 1], [4, 4, 3, 1], (19)

[6, 2, 2, 2], [5, 3, 2, 2], [4, 4, 2, 2], [4, 3, 3, 2], [3, 3, 3, 3] ]
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The first 10 of these sublists have “1” as their last element. If we delete the 1, we get the
partitions of 11 with 3 elements:

PL(11, 3) =[ [9, 1, 1], [8, 2, 1], [7, 3, 1], [6, 4, 1], [5, 5, 1], [7, 2, 2], [6, 3, 2], [5, 4, 2], (20)

[5, 3, 3], [4, 4, 3] ]

As for the last 5 sublists in (19), if we reduce each integer by 1, we get the partitions of
8 (= 12− 4) with 4 parts: PL(12− 4, 4)

PL(8, 4) =[ [5, 1, 1, 1], [4, 2, 1, 1], [3, 3, 1, 1], [3, 2, 2, 1], [2, 2, 2, 2] ] (21)

If we raise each number on the right-hand side of (21) by 1 we get the partitions in (19) again.

Both of these “manipulations” are cleary reversible.

General strategy, construction, algorithm and program:

Let PL(n, k) be the list of the integer patitions of n consisting of exactly k parts. Then in
order to construct the list PL(n, k):

1. Construct PL(n − 1, k − 1) and insert a “1” as the last element into each of the subsets.
Call the result PLins(n− 1, k − 1) (ins for “inserted”).

2. Construct PL(n − k, k) and add 1 to each of the thus generated numbers. Call the result
PLenh(n− k, k) (enh for “enhanced”).

Clearly PLins(n) and PLenh(n) are partitions of n with k parts. In general we get:

PL(n, k) = PLins(n− 1, k − 1) ∪ PLenh(n− k, k) (22)

By construction, the lists PLins(n−1, k−1) and PLenh(n−k, k) are disjoint, since every sublist
of PLins(n− 1, k − 1) ends with a “1” and no sublist of PLenh(n− k, k) does so.

Furthermore, by construction

• PL(n− 1, k − 1) and PLins(n− 1, k − 1) have the same number of elements, and

• PL(n− k, k) and PLenh(n− k, k) have the same number of elements.

Thus the number P (n, k) of partitions of n with k parts is:

P (n, k) = P (n− 1, k − 1) + P (n− k, k) (23)

Exercise: Construct PL(15, 5), P (15, 5) and P(15) in this way.

2.1.2 A Maxima program

As for the problem of generating the list PL(n, k) of partitions, this requires some specific
list processing commands and it is done in the Maxima file partitions.wxmx. Here, we will
concentrate on the problem of generating the number of partitions. The following Maxima
program is more or less a direct translation of the fundamental recursion (23) into Maxima
code.12

12Here, it is not the primary objective to give a very elegant or efficient version of the program, but to make
it transparent. Maxima comments are denoted by /* ... */ in the program text.
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Ps(n, k) := \* notation: Ps for ”P stepwise” *\
if n < 1 then 0 else

if k < 1 then 0 else
if k > n then 0 else

if k = 1 then 1 else
Ps(n-1, k-1) + Ps(n-k, k)

P(n) := sum(Ps(n,k), k, 1, n);

Calling P(n) gives the results:

P(45) = 89134

P(85) = 30167357 (by using the “memoized” version from the file partitions.wxmx)

Comment : In the “fully recursive” form (above), the program is logically transparent, but
not runtime-efficient. A more efficient version, which makes use of the “memoizing functions”
technique13, is given in the file partitions.wxmx.

The following figure gives an impression of how quickly the number of partitions grows.

Figure 1: number of partitions of a number n

13sometimes also called “array function” technique
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3 The triangle of partition numbers

The following “triangle” shows the partiton numbers P (n, k) with n varying in the rows and
k in the columns. It is halpful in understanding the “stepwise” version of the function for the
partition numbers.

k -->

n = 1: 1

n = 2: 1 1

n = 3: 1 1 1

n = 4: 1 2 1 1

n = 5: 1 2 2 1 1

n = 6: 1 3 3 2 1 1

n = 7: 1 3 4 3 2 1 1

n = 8: 1 4 5 5 3 2 1 1

n = 9: 1 4 7 6 5 3 2 1 1

n = 10: 1 5 8 9 7 5 3 2 1 1

n = 11: 1 5 10 11 10 7 5 3 2 1 1

n = 12: 1 6 12 15 13 11 7 5 3 2 1 1

n = 13: 1 6 14 18 18 14 11 7 5 3 2 1 1

n = 14: 1 7 16 23 23 20 15 11 7 5 3 2 1 1

n = 15: 1 7 19 27 30 26 21 15 11 7 5 3 2 1 1

n = 16: 1 8 21 34 37 35 28 22 15 11 7 5 3 2 1 1

n = 17: 1 8 24 39 47 44 38 29 22 15 11 7 5 3 2 1 1

n = 18: 1 9 27 47 57 58 49 40 30 22 15 11 7 5 3 2 1 1

Exercise: Visualize the recursive descripton (23) for n = 18 and k = 5 by inserting arrows in
the “partitions triangle” above.

4 Ferrers diagrams

Partitions can be graphically visualized by use of “Ferrers diagrams”14. They occur in a number
of branches of mathematics and physics, including the study of symmetric polynomials and
groups, see:

https://en.wikipedia.org/wiki/Integer_partition

https://www.britannica.com/science/combinatorics/The-Ferrer-diagram

Examples :

The partition 5 + 4 + 2 + 1 + 1 of the number 13 can be represented by the following diagram:

� � � � �
� � � �
� �
�
�

14N. M. Ferrers (1829–1903) was a British mathematician and university administrator.
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The following diagrams are the Ferrers diagrams for the 5 partitions of the number 4:

4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1

� � � � � � � � � � � �
� � � � �

� �
�

Comment : Nice visualization. . . . But to what end?

Challenge: Show that there are as many partitions of a number n with greatest part g as there
are partitions of n with g parts (i.e. with g summands).

Heuristics : Let n = 17 and g = 6

One partition is 17 = 6 + 4 + 3 + 3 + 1 (P-1)
Another one is 17 = 5 + 4 + 4 + 2 + 1 + 1 (P-2)

What about the challenge? . . . Any Ideas?

Enter : Ferrers

Draw the Ferrers diagram of (P-1):
playful idea: flipping the diagram along its ”main” diagonal

Ferrers diagram of (P-1):
17 = 6 + 4 + 3 + 3 + 1
� � � � � �
� � � �
� � �
� � �
�

Ferrers diagram of (P-2):
17 = 5 + 4 + 4 + 2 + 1 + 1
� � � � �
� � � �
� � � �
� �
�
�

In the example:
(P-1): 6 + 4 + 3 + 3 + 1 (greatest part = 6)
(P-2): 5 + 4 + 4 + 2 + 1 + 1 (number of parts = 6)

Obvious facts :
1. To every partition of n with greatest part g there is (by flipping) a partition with g parts.

2. When two partitions are equal their flippings are equal.

3. When two flippings are equal, the originals were equal.
What does double-flipping do?

Result: There are as many partitions of a number n with greatest part g as there are partitions
of that number with g parts.

Proof : Flipping the Ferrers diagrams

4.1 Specific partitions and their Ferrers diagrams

• partitions with odd parts

• partitions with distinct parts

• conjugate and self-conjugate partitions
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Example: n = 19

• partition with odd parts: 9 + 5 + 3 + 1 + 1

• partition with distinct parts: 7 + 6 + 4 + 2

• Draw the Ferrers diagrams!

We have seen: The Ferrers diagrams (P − 1) and (P − 2) are converted into each other recip-
rocally by flipping.

Definition: If the Ferrers diagrams P and Q are converted into each other reciprocally by
flipping, they are called conjugate diagrams.

Exercise: What if for the Ferrers diagram P : P = flipped(P ) ? Give an example.

Definition: If for the Ferrers diagram P we have P = flipped(P ) then P is called self-conjugate.

Theorem: The number of self-conjugate partitions is the same as the number of partitions
with distinct odd parts.

Proof : see Wikipedia:
https://en.wikipedia.org/wiki/Integer_partition#Ferrers_diagram

Some more results: Partitions with odd parts and with distinct parts

Exercise: How many partitions has the number 8? Set up a list of all the partitions.

Among the partitions of the number 8, there are 6 partitions with only odd parts:

• 7 + 1
• 5 + 3
• 5 + 1 + 1 + 1
• 3 + 3 + 1 + 1
• 3 + 1 + 1 + 1 + 1 + 1
• 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

Alternatively, we could count partitions in which no number occurs more than once. Such a
partition is called a partition with distinct parts. If we count the partitions of 8 with distinct
parts, we obtain the following 6 partitions:

• 8
• 7 + 1
• 6 + 2
• 5 + 3
• 5 + 2 + 1
• 4 + 3 + 1

This is a general property. We cite the following

Theorem: For each positive number, the number of partitions with odd parts equals the
number of partitions with distinct parts.

This result was proved by Leonhard Euler in 1748 and later was generalized as Glaisher’s
theorem. (see: Wikipedia https://en.wikipedia.org/wiki/Integer_partition#Ferrers_

diagram)
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5 Ramanujan and Hardy

Srinivasa Ramanujan (1887–1920) was one of India’s greatest mathematical geniuses and one
of the most fascinating mathematicians of all times. Though he had almost no formal training
in pure mathematics, he made substantial contributions to mathematical analysis, number
theory, infinite series, and continued fractions, including solutions to mathematical problems
considered unsolvable at his time.

Ramanujan also worked on partitions intensely and in 1918, in cooperation with the great
British mathematician G.H. Hardy (1877–1947), found the following approximating function
for the number of partitions P (n)
(see: https://en.wikipedia.org/wiki/Partition_function_(number_theory).

Papprox(n) :=
1

4n
√

3
· e(π·
√

2n
3
) (24)

Figure 2: Partitions: approximation by Ramanujan and Hardy

Srinivasa Ramanujan discovered that the partition function has nontrivial patterns in modular
arithmetic, now known as Ramanujan’s congruences.

Literature and media on Ramanujan:

• Kanigel R.: The Man who knew Infinity. New York: Washington Square Press, 1991
German translation: A. Beutelspacher: Der das Unendliche kannte, Braunschweig / Wies-
baden 1995

• Wikipedia (English): https://en.wikipedia.org/wiki/Srinivasa_Ramanujan

• Wikipedia (German): https://de.wikipedia.org/wiki/Srinivasa_Ramanujan

• McTutor, History of Mathematics :
https://mathshistory.st-andrews.ac.uk/Biographies/Ramanujan/

• Movie: Die Poesie des Unendlichen:
“trailer”: https://www.imdb.com/title/tt0787524/

14

https://en.wikipedia.org/wiki/Partition_function_(number_theory)
https://en.wikipedia.org/wiki/Srinivasa_Ramanujan
https://de.wikipedia.org/wiki/Srinivasa_Ramanujan
https://mathshistory.st-andrews.ac.uk/Biographies/Ramanujan/
https://www.imdb.com/title/tt0787524/


• Video with A. Beutelspacher: https://www.youtube.com/watch?v=4x3qXRgnYgw&

list=PLfdMKJMGPPtw7kmxHU1e4F-GRiqsJi3L3&index=1
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