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 Introduction:  Square numbers and triangular numbers 

 Square numbers

 Construction and recursive description

The  most  well-known  figurate  numbers  are  the  square  numbers  (in  German:
Quadratzahlen), i.e. the numbers  1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, ... .  

They are called square numbers because they can be "arranged"  in the shape of squares in

an obvious way -  and this square arrangement also explains the term "figurate number".   

The red angles (i.e. the hook-like shapes) in the diagram were calles "gnomons" in ancient

Greek mathematics.   Each square is made up by the (blue) previous square plus a (red)
gnomon.  The numbers belonging to the gnomons of the squares are:  1, 3, 5, 7, 9, ... .

Since the squares' gnomons start with 1 and, step by step, increase by  2, they are identical

to the odd numbers.    

As the diagram shows, each square number consists of the previous square plus a suitable

gnomon.  Or, viewed from the other end, by starting with 1 and adding the next gnomon,

we reach the next square, and so on.  Since these gnomon numbers obviously are identical
to the odd numbers, this shows: 

Theorem:  Each square number is the sum of consecutive odd numbers (starting with the

square number 1).       

Theorem  (more  precise  version):   Let   s   be  a  square  number.   Then

s  1 3  5  ... 2  k  1  for a suitable number k.    
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Exercise:  Describe the relation between  s  and  k  in the last theorem.    

Let  Qk   be the k-th square number  Q1  1.  Then, by taking a look at the pattern, we see
that obviously the following equations hold    

(i) Qk  k2  (this  is  called  an  "explicit"

description of  Qk)  
(ii) Qk1  Qk  2  k  1  (this  is  called  a  "recursive"

description of  Qk) 

Exercise:  Show that any odd square is congruent to  1  modulo 8.  

 Triangular numbers

The numbers  1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, ... are called triangular

numbers (in German:  Dreieckszahlen).  They can be represented by using trianglar patterns

in the following way:    

Let  Tk   be the k-th triangular number  T1  1.  Then the patterns show:  

Tk  Tk1  k 

Expanding this equation gives 

Tk  k  k  1  k  2 ...  2 1   i
i1

k
 

By the argument of the "young Gauß" (Carl Friedrich Gauß, 1777-1855), i.e. by composing

triangular "stairs" appropiately,   

 

or more formally by mathematical induction, it follows that  

Tk 
kk12  

Drawing the triangles (similarly like in Gauss' "stair" visualization above - but without the
top blue row), i.e. drawing them with one right angle and two 45-degree angles, gives some
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insight into the relationship between triangular and square numbers:  Each square is the sum

of two "adjacent" triangular numbers in the following way. 

Theorem:  Qk  Tk  Tk1

Proof:  Excercise (by a figurate number argument and by mathematical induction). 

 Polygonal numbers  

 Construction and recursive description  

Polygonal numbers (triangular numbers, squares, pentagonal numbers, hexagonal numbers,

...) are characterized by two parameters:  The number  E  of vertices (German: Ecken) of the

polygon and the stage  k  at which it is drawn  (we will always assume  E  3  and  k  1).   

By  GE, k  we denote the polygonal number belonging to a polygon with  E  vertices at

stage  k.  The numbers 

G3, k are called triangular numbers,    
G4, k square numbers,  

G5, k pentagonal numbers,   

G6, k hexagonal numbers, 

G7, k heptagonal numbers,  
G8, k octagonal numbers,

... 

          GE, k E-gonal numbers.    

 Construction of the pattern belonging to the polygonal number  GE, k  

Polygonal numbers are the numbers of dots in polygonal patterns in the following way:  At
stage  k  1  every polygonal pattern consits of exaxctly one dot, i.e.:  GE, 1  1.  Let

k  2.   The  pattern  belonging  to   GE, k   evolves  out  of  the  pattern  belonging  to

GE, k  1  by joining an open chain of new dots to  E  2  sides of the old pattern so that
the vertices make up a new (regular)  E-gon with exactly  k  dots on each of its sides.    

In each of the following examples the old pattern is represented by blue dots and the open

chain of the new dots is represented by red dots. 

Example:  The first pentagonal patterns and numbers   
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               1           5                   12                                22                                      35  

Example:  The first hexagonal patterns and numbers   

              1         6                   15                            28                                      45

From this construction the following equation follows at once:   

GE, k  GE, k  1 E  2  k  E  3 

Proof:  The term  GE, k  1  gives the number of dots at stage  k  1.  To this, a chain of
dots  is  added  at   E  2   sides,  each  side  consisting  of   k   dots.   This  gives

E  2  k  E  3  new dots, for the dots at the  E  3  "joins" belong to two sides of the

new chain and must not be counted twice.  

 A Mathematica-Program for computing the polygonal number  G[E, k]  

The following (two-line) Mathematica  program is  a direct  implementation of  the above

given description.  

GE_, 1  1 ;
GE_, k_ : GE, k  1  E  2 k  E  3

Next, we consider some uses of this program.  

G5, 4

22

TableG5, k, k, 1, 20

1, 5, 12, 22, 35, 51, 70, 92, 117, 145,
176, 210, 247, 287, 330, 376, 425, 477, 532, 590
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TableFormTablek, G6, k, k, 1, 20, TableAlignments  Right

1 1
2 6
3 15
4 28
5 45
6 66
7 91
8 120
9 153
10 190
11 231
12 276
13 325
14 378
15 435
16 496
17 561
18 630
19 703
20 780

t  TableG6, k, k, 1, 20

1, 6, 15, 28, 45, 66, 91, 120, 153, 190,
231, 276, 325, 378, 435, 496, 561, 630, 703, 780

ApplyPlus, t

5530

 Some (empirical) observations   

The next table gives the first polygonal numbers from triangles to 10-gons.  

TableFormTableTableGE, k, k, 1, 18, E, 3, 10,
TableAlignments  Right, TableSpacing  1

1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153
1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289
1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 376 425
1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561
1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 616 697
1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 736 833
1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 856 969
1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 976 1105

The  following  program  called   Delta[L_]   computes  the  differences  of  the  adjacent

numbers in any given list  L  of numbers.  The program  Delta[L_, s_]  iterates this

computation of differences  s  times.    

DeltaL_ : TableLi  1  Li, i, 1, LengthL  1;
DeltaL_, s_ : Ifs  1, DeltaL, DeltaDeltaL, s  1
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TableG6, k, k, 1, 20

1, 6, 15, 28, 45, 66, 91, 120, 153, 190,
231, 276, 325, 378, 435, 496, 561, 630, 703, 780

Delta%

5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77

Delta%

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Applying the two-parameter Delta function from above gives the same values: 

DeltaTableG6, k, k, 1, 20 , 2

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

The next program iterates the computation of the differences until all differences are zero.  

DiffTableL_ :
ModuleT  L, L1,
L1  DeltaL;
WhileNotUnionL1  0, T  AppendT, L1; L1  DeltaL1;
T  AppendT, L1;
ReturnT 

TableForm
DiffTable
TableG6, k, k, 1, 18,
TableAlignments  Right, TableSpacing  1

1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561 630
5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the next example, this process is applied to all of the E-gonal numbers with 3  E  10. 

TableForm
Table
DiffTable
TableGE, k, k, 1, 18, E, 3, 10,

TableSpacing  2
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1
3
6
10
15
21
28
36
45
55
66
78
91
105
120
136
153
171

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
4
9
16
25
36
49
64
81
100
121
144
169
196
225
256
289
324

3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
5
12
22
35
51
70
92
117
145
176
210
247
287
330
376
425
477

4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
6
15
28
45
66
91
120
153
190
231
276
325
378
435
496
561
630

5
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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1
7
18
34
55
81
112
148
189
235
286
342
403
469
540
616
697
783

6
11
16
21
26
31
36
41
46
51
56
61
66
71
76
81
86

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
8
21
40
65
96
133
176
225
280
341
408
481
560
645
736
833
936

7
13
19
25
31
37
43
49
55
61
67
73
79
85
91
97
103

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
9
24
46
75
111
154
204
261
325
396
474
559
651
750
856
969
1089

8
15
22
29
36
43
50
57
64
71
78
85
92
99
106
113
120

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
10
27
52
85
126
175
232
297
370
451
540
637
742
855
976
1105
1242

9
17
25
33
41
49
57
65
73
81
89
97
105
113
121
129
137

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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 Closed form representations ("formulae") 

 Pyramidal numbers  

Pyramidal  numbers  (tetrahedral  numbers,  cubes,  ...)  arise  from  "stacking"  successive

polygonal numbers so as to form a pyramid.   

The following picture gives a visualisation of the tetrahedral numers.   

 

The next program obviously computes the pyramidal numbers.  

H[E_, k_] := Sum[G[E, i], {i, 1, k}]

An alternative (recursive) description of the pyramidal numbers obviously is given by:  

H2E_, 1  1;
H2E_, k_ : H2E, k  1  GE, k

We compare some results. 

TableH3, k, k, 1, 22
TableH23, k, k, 1, 22

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286,
364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286,
364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024
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Exercise:   In  a newspaper article  (Sonntag Aktuell,  7.  Dez.  1997) it  was claimed that  the

following  Christmas  tree  consits  of  3000  champaign  glasses.   Check  the  correctness  or

plausibility of this claim.  

 Sums of trianguar numbers, squares, n-gonal numbers

 Utilities
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