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B The annuity equation

In the introduction, the annuity equation was defined as the difference equation

Vis1 =4y +B

m Implementation in Mathematica

Annuity[y0_, A , B , k ] :=
Module[{y =y0, i =0},
While [i < k,
i=i+1;
y=Axy+B];
Return([y] ]
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Annuity[100000, 1.05, -10000, 4]

78449.4

Table[{i, Annuity[100000, 1.05, -10000, i]}, {i, 1, 15}]

{{1, 95000.}, {2, 89750.}, {3, 84237.5}, {4, 78449.4}, {5, 72371.8},
{6, 65990.4}, {7, 59290.}, {8, 52254.5}, {9, 44867.2}, {10, 37110.5},
(11, 28966.1}, {12, 20414.4}, {13, 11435.1}, {14, 2006.84}, {15,

% // TableForm

1 95000.
2 89750.
3 84237.5
4 78449.4
5 72371.8
6 65990.4
7 59290.
8 52254.5
9 44867.2
10 37110.5
11 28966.1
12 20414.4
13 11435.1
14 2006.84
15 -7892.82

Remove([y0, y, A, B];
Table[{i, Annuity[yO0, A, B, i]}, {i, 1, 10}] // TableForm

1 B+Avy0

2 B+A (B+Ay0)

3 B+A (B+A (B+Ay0))

4 B+A (B+A (B+A (B+Ay0)))

5 B+A (B+A (B+A (B+A (B+Ay0))))

6 B+A (B+A (B+A (B+A (B+A (B+Ay0)))))

7 B+A (B+A(B+A (B+A(B+A (B+A (B+Ay0))))))

8 B+A (B+A (B+A (B+A (B+A (B+A (B+A (B+Ay0)))))))

9 B+A(B+A(B+A(B+A(B+A(B+A(B+A(B+A(B+Ay0))))))))

10 B+A(B+A(B+A(B+A(B+A(B+A(B+A(B+A (B+A (B+Avy0)))))))))

~7892.82}}

Table[{i, Annuity[y0, A, B, i]}, {i, 1, 10}] // Simplify // TableForm

B+Ay0

B+A (B+Ay0)

B+A (B+A (B+Ay0))
1+2+2%2+23)B+Aa%y0
1+A+A2+A3+A4) B +A° y0
1+A+22+23+A%+2%) B+2a%y0

1+2A+22+23+A%+25+2%4+27)B+A8 y0
1+2+22+23+A%+2%5+2%+27 +28) B+Aa% y0

P O 0 39 o OB W N

(
(
(
(L+A+2%2+23+2%+25+28) B+A7 yO
(
(
(

1+A+A%2+23+2%+25+2%+27 +284+2%) B+A0 yO

(1+2+2%2+23+24+n5+2%+27 +28+2%) x(1-2) // Simplify

17A10
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k
2
i=0

-1 +Al+k
-1+A

k
2™
i=0

1 - A1+k

* (1-3)

// Simplify

® A more "difference equation" like style of notation

Y[yo_r A_I B_r k_] =
Module[{yy =y0, i =0},

While [i <k,

i=i+1;

Yy =A*yy+B];
Return|[yy] ]

y[100000, 1.05, -10000, 4]

78449.4

Table[{i, y[100000, 1.05, -10000, i]}, {i, 1, 15}]

{{1, 95000.}, {2, 89750.}, {3, 84237.5}, {4, 78449.4}, {5, 72371.8},
{6, 65990.4}, {7, 59290.}, {8, 52254.5}, {9, 44867.2}, {10, 37110.5},
(11, 28966.1}, {12, 20414.4}, {13, 11435.1}, {14, 2006.84}, {15, ~7892

% // TableForm

1 95000.
2 89750.
3 84237.5
4 78449.4
5 72371.8
6 65990.4
7 59290.
8 52254.5
9 44867.2
10 37110.5
11 28966.1
12 20414.4
13 11435.1
14 2006.84
15 -7892.82

.82}}
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m Representations / solutions in "closed form"

Theorem (Annuity equation in closed form - AECF)
(ct. [Diirr / Ziegenbalg 1989], Satz 7.1, page 48)
The term y; of the annuity equation
Virl = A -y +B
can be expressed in the following way

(a) =+ A+ A2+ B+ A4+ + AN B+ 4k .y,
If 4+1 then
k_
(al) ye= 4= B+ k. yg
If A=1 then
(a2) vk =k-B+ 45y

Exercise: Prove the above theorem by formally applying (mathematical) induction.

Corollary

(al) Theterm yj of the geometric sequence
Vi+1 =AYk

can be expressed in the following way
i = 4Ky

(a2) The term yy; of the arithmetic sequence
Vk+1 =Yg+ B

can be expressed in the following way

Yk=k-B+yo

= Some remarks on methodology and terminology

In the literature on difference equations the above theorem (in particular variant al) is often expressed in a wording

k_ . . . .
according to which the closed form representation y; = Iil_—ll B+ 4k. vo is the "solution" of the difference equation

Viv1 =A-yp +B.

It is, however, debatable, in which sense this is the case and for what purposes the closed form representation is more
adequate than the original (recursive) version (cf. J. Ziegenbalg: "Formula versus Algorithm"; paper presented at the
the conference The Origins of Algebra: From al-Khwarizmi to Descartes, Universitat Pompeu Fabra (UPF) and
Institucié Catalana de Recerca i Estudis Avangats (ICREA), Barcelona, March 27-29, 2003)

Aspects subject to discussion are:
1. Computational efficiency
2. Cognitive efficiency
3. Historical aspects
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The representations (al) and (a2) in theorem AECF are often called representations in closed form or solutions in
closed form. The terminology "closed form" suggests that these representations are non-recursive. But at a closer look
this turns out to be only part of the truth, because in the evaluation, for instance, of a term like Ak recursion comes into
the game, again.

In spite of all this, in the following text the standard terminology is adopted and in particular the term

k
Vi = :414__:11_ B+ A4k. yo will be called a "solution" of the difference equation yj;,.1 =4-y; + B.

Similarly, the term "solution" will also be used in this way for other (more general) difference equations.

m Working with the Mathematica Package '"Discrete Math"

The "add-on" package "Discrete Math" distributed with Mathematica contains the function RSolve (for "recurrence
solve") by which solutions in closed form can conveniently be obtained for some types of recursive equations.

The next line shows how to load the RSolve function.

<< DiscreteMath RSolve"

? RSolve

RSolve[egn, a[n], n] solves a recurrence equation for a[n]. RSolve[{egnl, eqn2, ... },
{al[n], a2[n], ... }, n] solves a system of recurrence equations. RSolve[eqn,
alnl, n2, ... 1, {nl, n2, ... }] solves a partial recurrence equation. Mehr...

The next line shows an example of how to use the RSolve function.

RSolve[y[k +1] ==A xy[k] +B, y[k], k]

(1-2kyB

— +a bR cr1)}}

{{vix] - -

In the last expression C[1] is a constant which can be determined by adjusting the general form to initial values.
The next line shows an evaluation, resulting in y[0].

(-1+Ak) B+ (-1+2) akC[1]
-1+A

ReplaceAll[ , ko 0]
C[1]

The same call in a different syntax:

(-1+Aak) B+ (-1+2) akCJ[1]
-1+A

/. k-0

Cl1]
Above, we used the definition y[0] =y0. So the constant C [1] is just our initial value y0.

In the next example, the initial conditions are specified within RSolve.
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RSolve[{y[k+1] == A xy[k] +B, y[0] ==y0}, yI[k], k]

-B+AKB-aky0+altk y0 1)
-1+A

{{vix] -
B The generalized Fibonacci equation

= A remark on the historical development

In his Liber abaci (1202), Leonardo of Pisa (called Fibonacci, ca. 1170 - 1250) formulated a problem giving rise to the
following famous sequence of numbers now called the "Fibonacci" numbers:

1,1,2,3,5,8,13,21, 34, 55, 89, ...
Its most important property is that every member of the sequence is the sum of its two immediate predecessors (except
for the initial values):

Freo = Fiq1 + Fg
It took several centuries until J. P. M. Binet (1786-1856), based on results of L. Euler and A. de Moivre, finally
presented the following formula for the Fibonacci numbers:
P (1+x/§)k 1 (1-6)"

s\ 2 ) s U2

R NG

The formula, today, is known as Binet's formula. Below, we will develop this formula within the framework of

difference equations.

A.deMoivre (1667 — 1754) L. Euler (1707 — 1783) J.P.M. Binet (1786 — 1856)

In case that the reader is doubtful that the formula is correct (which is perfectly plausible, regarding the complexity of
the formula and in particular the embedded root expressions), here is a preliminary test:
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Table| , {k, 1, 15}]

== %
Vs 2 Vs
(1VF 1eyE (1-V5)" (1e95)° (1-VE)"  (1+95)°
25 245 ' 4+/5 45 8+/5 85
C(1-vE)' (1+E)' (1-9E)T (1+4E)T (1-435)°  (1+45)°

16v5 1645 ' 325 | 3245 | ea+5 | 645
(1-v5)"  (1+v5)"  (1-v53)° (1+v5)"  (1-v5)7 (1+v5)’

1«/—]

12845 12845 ' 25645 25645 ' 512+/5  512+/5

(1—\/5)10 ) (l+\/§)10 ) (1—\/3)11 ) (l+\/§)11 ) (l—\/§)12 ) (1+\/§)12
1024 /5 1024+/5 ~ 2048+/5 2048+/5 ' 4096+/5 4096+/5
(1—\/3)13 (l+\/§)13 (1—\/3)14 ) (l+\/§)14 (l—\/§)15 ) (1+\/§)15

- — + — r - — — 7 =
8192 4/5 8192 +/5 16384 /5 16384+/5 32768 /5 32768\/3}

Table[Simplify| , {k, 1, 15}]

=== =D

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610}

1+v5) 1 (1-+5
2 J«/?[ 2

{t., 1., 2.,3.,5.,8.,13., 21., 34., 55., 89., 144., 233., 377., 610.}

Table[N['\/l_ [ J ], tx, 1, 15]
5

m Terminology

In this section we will consider the following linear difference equation of oder 2 with constant coefficients and constant
inhomogeneity

Ay Vigo + A1 ype1 + Aoy =0 (where Aq, A1 and Ap are fixed constants; 4, # 0)
Since A, # 0 we can divide this equation by A and obtain the somewhat simpler but equivalent form
Vi+2 + a1 Yir1 +ao-yg =0 (* GFE *)

This equation clearly generalizes the Fibonacci equation; we will, therefore, call it the generalized Fibonacci equation
(GFE) for short.

m Applying standard methodology

Usually in mathematics (and elsewhere) it is more difficult to solve a generalized form of a specific problem than to
solve the specific problem itself, for the solution of the generalized problem contains the solution of the specific
problem. Sometimes, however, the solution of the more general problem turns out to be easier than the solution of the
specific problem — thus supporting the dictum

"be wise, generalize".
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Obtaining a closed form representation for the Fibonacci numbers is a striking illustration of this fact. It will turn out to
be simpler and more natural to solve the generalized Fibonacci equation than the original (special) Fibonacci equation.

A general strategy in mathematical problem solving is to try to reduce a new, unknown situation to well-known cases.
In this way, we will try to convert the generalized Fibonacci equation (of order 2) into two annuity equations (of order
1). If we succeed, we can hope combine the closed form representations of these annuity equations into a closed form
representation of the generalized Fibonacci equation.

m First attempt

The generalized Fibonacci equation might, for instance, be thought of as the "addition" of the following two first-order
equations:

1
Vk+2+ 5 a1 Yis1 =0

1
7 41 Vk+1 a0 vk =0

Exercise: Convert each of these two first-order equations into the standard form for geometric sequences and show that
they, in general, have no common solution (i.e. no common closed form representation).

= Second attempt: Introducing new parameters for greater flexibility (in this case: introducing a
"tuning'' parameter)

Due to this result we have to handle the decomposition in a slightly more subtle way by introducing an extra parameter
called ¢ (for "tuning") in the following way.

YVks2 +(ap +1)-yke1 =0

=t ypy1tao yp=0

Still, GFE can be thought of as being the sum of these first-order equations. If, by choosing a suitable "tuning" value for
t, we can make these two first-order equations identical, then they will have the same closed form representations and
we can try to combine their individual solutions into a solution for the generalized Fibonacci equation.

Written in the "standard" form for geometric sequences the last two first-order equations read

= Tuning process - with the goal to make the two equations identical
Viw2 = =@y + 1) yge (* GS-1%)
Vi1 = <y (*GS-2%)

These difference equations for geometric sequences are identical if their coefficients —(aj +¢) and aTO are equal.

(The "index-shift" by 1 is irrelevant, since the equations are valid for all values of k).
A necessary condition for equality, hence, is

~(ay+1)= <}
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ie.

P4a-t+ay=0

m The characteristic polynomial

Thus, the above geometric sequences are identical if the "tuning" parameter ¢ satisfies the so-called characteristic
equation of (* GFE *):

x2+a1-x+a0=0

We finally obtain the tuning parameters

—a1+\1a12—4a0

2

—a1—\ a;2-4ay

= 3
In Mathematica notation:

Solve[t*2+alxt+al0 ==0, t]

Ht%% (fal—\/—4a0+a12)}, {t%% (7a1+\/—4a0+a12)}}

= Solutions - by applying the results on geometric series
Thus, the geometric sequences adding up to (* GFE *) are

1. By using the root ¢;:

—a1+\[a12—4a0 ] Vesl
*Vik+

Vi+2 = —[01 s

2. By using the root #):

—a1—y a;2-4ay
Vi+2 =—|a1 + A S— R D
y = % _____ y
k+1 N 2-Aag k

Exercise: Simplify these formulae.

m Vieta's formulae

Excursion: Vieta's formulae
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The tuning parameters ¢; and t,, being the roots of the quadratic equation
x2 +ay-x+ag=0

must satisfy Vieta's equations:
t1+tp=—-a; and -t =a

Thus, by substituting either #; or #, for ¢ and applying Vieta's formulae we can rewrite (* GS-1 *) and (GS-2 *) in
the following way:

Yier2 =0 Vir1 (*GS-1.1 %)
Yk+2 = 0" Vk+1 (*GS-1.2 %)
Vi1 =1 Vk (* GS-2.1 %)
Yk+1 =0 Yk (* GS-2.2 %)

By pure combinatorics, substituting two roots into two equations formally gives four cases, but by algebra (Vieta) these
melt down to two essentially different cases.

m Results

Theorem (solutions of the generalized Fibonacci equation)
(cf. [Diirr / Ziegenbalg 1989], Satz 13.1, page 90)
The generalized Fibonacci equation

Vi+2 +a1-Yis1 a0y =0
has the following "solutions" (i.e. closed form representations):

k
@l) = [ —aj+v/ a12—4a0_]

2
and
k
| —a- a;2—4aq
@ ()

Obtaining more solutions:

Theorem (combining solutions)

If the sequences
(URk=0,...c0 aNd (Vp)r=o,. oo

are solutions of the generalized Fibonacci equation
Vi+2 + a1 Vir1 T a0y =0

then their "sum"

(al)  (upk=o,....00 ® VKk=0,..c0 = WUk +Vii=0,. o0
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and for any real number C the "scalar multiple"

(@2) COWp=o, 00 = (C-upi=o, . oo
also are solutions of the generalized Fibonacci equation.

Proof: Exercise

Henceforth we will use the simpler operation symbols + and - instead of @& and O©.

Corollary (linear combination of solutions):

If the sequences
(URk=0,...c0 aNd (Vp)r=0,.. 0o

are solutions of the generalized Fibonacci equation
Vi+2 + a1 Vir1 T a0y =0

then for any real numbers C; and C, the "linear combination"
C1-(updk=0,. 00 + C2- Vidi=0,..0

also are solutions of the generalized Fibonacci equation.

Corollary
The generalized Fibonacci equation

Vi+2 +a1 Vi1 + a0y =0
has the following "solutions" (i.e. closed form representations):

k k
— 2_4 —ay— 2_4
¢ (ﬁ— \/10] +C2.(al— \/10] e

2 2

where C| and C, are arbitrary real (or complex) numbers.

In other words: The set of all solutions of the generalized Fibonacci equation is a vector space over a suitable scalar
field (i.e. usually the field the coefficients are taken from); cf. [Diirr / Ziegenbalg 1989], Satz 14.1, page 91.
Furthermore, it is not difficult to see that the dimension of this vector space is 2 and that, in case the solutions #; and t,
of GFE's characteristic equation do not coincide, then the sequences (¢ )* and (tz)k are a basis of this vector space.

m Initial values

The above results were valid independent of any initial values yy and y; of the GFE. Let us now assume that the
solution (* S-GFE *), additionally, is to satisfy these initial values. Then for k=0 and k=1 the following two linear
equations will have to be satisfied by C; and Cj:

Corollary
The initial values of the generalized Fibonacci equation

Vi+2 + a1 Vi1 T a0y =0
can be expressed in the following way:

0 0
- \ai2-4 —a1—] a12-4
C1 ( ar+y ap ao_] + C2 [ ap ap ao_] = (* LE-1 *)

5 - v
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1 1
Cl'(—a1+\/a12—4a0 } +C2.[—a1—\/a12—400 ] = (* LE-2 *)

2 2
1.€.
Ci+C =y

c —ay+y a12-4ag C —aj—/a;2-4agy _
1° 2 + 2" 2 _yl

Notwithstanding the algebraic complexity of these equations, they are two simple linear equations in the two unknowns
C1 and C; which can be solved by straightforward algebraic procedures.

Exercise: Show that

-ai Yof\/*4 ap+a? yo-2y1
2 \/—4 ao+a%

a1 yo-+/ -4 ap+a? yo+2y1
Co = -

B 2\/—4 a0+a%

C1 =-

and

are solutions of (* LE-1 *) and (* LE-2 *).

m Applying the results to the sequence of the standard Fibonacci numbers -
Binet's formula

The sequence of the standard Fibonacci numbers, equivalently either starting with index 0 or index 1 is given by

Yo Y1 y2 ¥y va Vs Yo Vi
0o 1 1 2 3 5 8 13

Specializing from GFE, its parameters are:
a;j=-1 and qg=-1.
Hence, the homogeneous equation

Vk+2 = Vir1 =Yk =0

has the "general" solution

ie.
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13

m Putting it all together using Mathematica's ''symbol manipulation" features

Solve [{Cl +Cy ==yp, C1 * +Co *

2

-a; +y a2 -4ag -a; -1 ai2-4ag
\/ —\/2 ==Y1}I {Cllcz}]

_al—«l—4ao+a% +—a1+ —4a0+a% --y} {
2+/5 2+/5 L

SolveHO = Vo, —

-31Y0-\/-4ao+a§ Yo-2Yy1

Ci1 =- ———
2\/—4a(;+a"17

*31YO*\/*4ao+af Yo-2vy1

2\/—4ao+a§

-31Y0-\/-4ao+af Yo-2y1
Ci1 =- /. {ag~»>-1,a1-»-1,y0-0, y1 1}

2\/-4a0+a"1’

1
\5
a1yo-vV-4ap+a? yo+2y1
Cy = -
2'\/—4ao+a§

ajyo-+-4ap+a? yo+2y1
2\/—4a0+a%

a1yo-vV-4ap+a? yo+2y1

2\/—4ao+a§
1

NG

C2 /. {ag~»-1,a1->-1,y0~-0, y1>1}

= Binet's Formula

Theorem (Binet)
The Fibonacci equation

Vier2 = Vierl T Vi
has the following "solution" (i.e. closed form representations):

k k
ne= g () - g (55

Check
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Yk =

=

(3 -v5))" (5 (+V5))"
Vs V5

Table[{k, Vr_ [1+V_] ! *[1_ ]},{k,o,sﬂ
{t0, 0}, {1, - 12f;%;; N 1§+§%;§}

o VS Vs ) s

’ 4+/5 a5 U7 8+/5 gs
{4 _(1_\/3)4+ (l+“/§)4} {5 _(1_\/3)5+ <l+\/§)5}}
’ 16+/5 1645 U7 32+/5 324/5

Table [Simplify[{k, N;; *[ 1+‘VG;] - N;; *[ 1_;J§-] 1. x, 0, 53]

2

{{0, 0}, {1, 1}, {2, 1}, {3, 2}, {4, 3}, {5, 5}}

Table[{k, — [1”/?] - [LWJ /1 N}, {k, 0, 25}]
A5 2 A5 2

{{0, 0.}, {1, 1.}, {2, 1.}, {3, 2.}, {4, 3.}, {5, 5.}, {6, 8.}, {7, 13.},

(8, 21.}, {9, 34.}, {10, 55.}, {11, 89.}, {12, 144.}, {13, 233.}, {14, 377.},
{15, 610.}, {16, 987.}, {17, 1597.}, {18, 2584.}, {19, 4181.}, {20, 6765.},
{21, 10946.}, {22, 17711.}, {23, 28657.}, {24, 46368.}, {25, 75025.}}
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15

% // TableForm

0 0.

1 1.

2 1.

3 2.

4 3.

5 5.

6 8.

7 13.

8 21

9 34.
10 55.
11 89

12 144
13 233
14 377
15 610
16 987
17 1597
18 2584
19 4181
20 6765
21 10946
22 17711
23 28657
24 46368
25 75025

= Applying genuine computeralgebra features

1-+\[§

1 [ ]k_ 1 (1-4/5
w2 | Vs

2

Table[{k,

{to, o}, {1,

k
] }, 1k, 0, 10}]

1-45 1+¢§}, (2 (1-+/5)° . (1++/5)°

24/5 ’ 24/5
(1-v5)"  (1+v5)]

44/5

(1-v5)"  (1+5)°

{30 - sv5 845 b (o - 16v5 1645
(1-V5)°  (1+v35)°

B-V5)°, (1ev5)’

{50 - 325 | 3245 Jo {60 - 645 645

1-v5) | (evE)

{7 - 1285 12845 Jo {80 - 2565 2565
(1-45)° ) (1+45)

(1-v5)"  (1+V5)°

9, - + , 110, -
{ 512/5 512+/5 b {20/ 1024 /5 1024 /5

% // Simplify

{{0, 0}, {1, 1}, {2, 1}, {3, 2}, {4, 3},
{5, 5}, {6, 8}, {7, 13}, {8, 21}, {9, 34}, {10, 55}}
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= RSolve for GFE
Remove[y, y0, yl, a0, al]
RSolving the GFE:

RSolve[{y[k+2] +al*y[k+1] +a0xy[k] =0, y[0] ==y0, y[1] ==y1}, y[k], k]
R 1
\/74 a0 +al?

~al (—al—\/—4a0+a12)ky0+\/—4a0+a12 (—al—\/—4a0+a12)ky0+

al (—al+w/—4a0+a12)ky0+\/—4a0+a12 (—al+w/—4a0+a12)ky0—
—— k k

2(—a1—\/—4a0+a12) yl+2(—al+w/—4a0+a12) vyl ]}}

RSolving the original Fibonacci equation:

{{vix]

(2—l—k

RSolve[{y[k+2] -y[k+1] -y[k] =0, y[0] ==0, y[1] ==1}, y[k], k]

1 A5\ (1, 5
(2 2)\/3(2 2) }}

{{vix] - -

B Auxiliary stuff



