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  The annuity equation 

In the introduction, the annuity equation was defined as the difference equation   

yk1  A  yk  B   

 Implementation in Mathematica 

Annuityy0_, A_, B_, k_ :
Moduley  y0, i  0,
While i  k,
i  i  1;
y  A y  B;
Returny 
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Annuity100000 , 1.05, 10000, 4

78449.4

Tablei, Annuity100000, 1.05, 10000, i, i, 1, 15

1, 95000., 2, 89750., 3, 84237.5, 4, 78449.4, 5, 72371.8,
6, 65990.4, 7, 59290., 8, 52254.5, 9, 44867.2, 10, 37110.5,
11, 28966.1, 12, 20414.4, 13, 11435.1, 14, 2006.84, 15, 7892.82

%  TableForm

1 95000.
2 89750.
3 84237.5
4 78449.4
5 72371.8
6 65990.4
7 59290.
8 52254.5
9 44867.2
10 37110.5
11 28966.1
12 20414.4
13 11435.1
14 2006.84
15 7892.82

Removey0, y, A, B;
Tablei, Annuityy0, A, B, i, i, 1, 10  TableForm

1 B  A y0
2 B  A B  A y0
3 B  A B  A B  A y0
4 B  A B  A B  A B  A y0
5 B  A B  A B  A B  A B  A y0
6 B  A B  A B  A B  A B  A B  A y0
7 B  A B  A B  A B  A B  A B  A B  A y0
8 B  A B  A B  A B  A B  A B  A B  A B  A y0
9 B  A B  A B  A B  A B  A B  A B  A B  A B  A y0
10 B  A B  A B  A B  A B  A B  A B  A B  A B  A B  A y0

Tablei, Annuityy0, A, B, i, i, 1, 10  Simplify  TableForm

1 B  A y0
2 B  A B  A y0
3 B  A B  A B  A y0
4 1  A  A2  A3 B  A4 y0
5 1  A  A2  A3  A4 B  A5 y0
6 1  A  A2  A3  A4  A5 B  A6 y0
7 1  A  A2  A3  A4  A5  A6 B  A7 y0
8 1  A  A2  A3  A4  A5  A6  A7 B  A8 y0
9 1  A  A2  A3  A4  A5  A6  A7  A8 B  A9 y0
10 1  A  A2  A3  A4  A5  A6  A7  A8  A9 B  A10 y0

1  A  A2  A3  A4  A5  A6  A7  A8  A91  A  Simplify

1  A10
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1  A  Simplify

1  A1k

 A more "difference equation" like style of notation 

yy0_, A_, B_, k_ :
Moduleyy  y0, i  0,
While i  k,
i  i  1;
yy  A yy  B;
Returnyy 

y100000 , 1.05, 10000, 4

78449.4

Tablei, y100000, 1.05, 10000, i, i, 1, 15

1, 95000., 2, 89750., 3, 84237.5, 4, 78449.4, 5, 72371.8,
6, 65990.4, 7, 59290., 8, 52254.5, 9, 44867.2, 10, 37110.5,
11, 28966.1, 12, 20414.4, 13, 11435.1, 14, 2006.84, 15, 7892.82

%  TableForm

1 95000.
2 89750.
3 84237.5
4 78449.4
5 72371.8
6 65990.4
7 59290.
8 52254.5
9 44867.2
10 37110.5
11 28966.1
12 20414.4
13 11435.1
14 2006.84
15 7892.82
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 Representations / solutions in "closed form"  

Theorem (Annuity equation in closed form - AECF)   

(cf. [Dürr / Ziegenbalg 1989], Satz 7.1, page 48) 

The term  yk   of the annuity equation 

yk1  A  yk  B   

can be expressed in the following way 

(a) yk  1  A  A2  A3  A4  ... Ak1 B  Ak  y0    

If   A  1  then   

(a1) yk 
Ak1
A1

B  Ak  y0    

If   A  1  then   

(a2) yk  k B  Ak  y0    

Exercise:  Prove the above theorem by formally applying (mathematical) induction.  

Corollary   

(a1)  The term  yk   of the geometric sequence  

yk1  A  yk

can be expressed in the following way 

yk  Ak  y0    

(a2)  The term  yk   of the arithmetic sequence  

yk1  yk  B   

can be expressed in the following way 

yk  k B  y0    

 Some remarks on methodology and terminology 

In the literature on difference equations the above theorem (in particular variant a1) is often expressed in a wording

according to which the closed form representation  yk 
Ak1
A1

B  Ak  y0  is the "solution" of the difference equation

yk1  A  yk  B.     

It is, however, debatable, in which sense this is the case and for what purposes the closed form representation is more

adequate than the original (recursive) version (cf. J. Ziegenbalg:  "Formula versus Algorithm"; paper presented at the

the conference  The Origins of Algebra:  From al-Khwarizmi to Descartes,  Universitat Pompeu Fabra (UPF) and

Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, March 27-29, 2003)   

Aspects subject to discussion are:  

1. Computational efficiency 

2. Cognitive efficiency 

3. Historical aspects
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The representations (a1) and (a2) in theorem AECF are often called representations in closed form  or solutions in

closed form.  The terminology "closed form" suggests that these representations are non-recursive.  But at a closer look

this turns out to be only part of the truth, because in the evaluation, for instance, of a term like  Ak   recursion comes into

the game, again.  

In  spite  of  all  this,  in  the  following  text  the  standard  terminology  is  adopted  and  in  particular  the  term

yk 
Ak1
A1

B  Ak  y0  will be called a "solution" of the difference equation  yk1  A  yk  B.  

Similarly, the term "solution" will also be used in this way for other (more general) difference equations.  

 Working with the Mathematica Package "Discrete Math"

The "add-on" package "Discrete Math" distributed with Mathematica  contains the function RSolve (for "recurrence

solve") by which solutions in closed form can conveniently be obtained for some types of recursive equations.  

The next line shows how to load the RSolve function. 

 DiscreteMath`RSolve`

?RSolve

RSolveeqn, an, n solves a recurrence equation for an. RSolveeqn1, eqn2, ... ,
a1n, a2n, ... , n solves a system of recurrence equations. RSolveeqn,

an1, n2, ... , n1, n2, ...  solves a partial recurrence equation. Mehr…

The next line shows an example of how to use the RSolve function. 

RSolveyk  1  A  yk  B, yk, k

yk  
1  Ak B

1  A

 A1k C1

In the last expression  C[1]  is a constant which can be determined by adjusting the general form to initial values.  

The next line shows an evaluation, resulting in  y[0].    

ReplaceAll
1  Ak B  1  A Ak C1


1  A
, k  0

C1

The same call in a different syntax: 

1  Ak B  1  A Ak C1


1  A
. k  0

C1

Above, we used the definition  y[0] = y0.  So the constant  C[1]  is just our initial value  y0.  

In the next example, the initial conditions are specified within RSolve.  
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RSolveyk  1  A yk  B, y0  y0, yk, k

yk  B  Ak B  Ak y0  A1k y0


1  A


  The generalized Fibonacci equation 

 A remark on the historical development 

In his Liber abaci (1202), Leonardo of Pisa (called Fibonacci, ca. 1170 - 1250) formulated a problem giving rise to the

following famous sequence of numbers now called the "Fibonacci" numbers: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...  

Its most important property is that every member of the sequence is the sum of its two immediate predecessors (except

for the initial values):   

Fk2  Fk1  Fk

It  took  several  centuries  until  J. P. M. Binet  (1786-1856),  based  on results  of  L.  Euler  and  A.  de  Moivre,  finally

presented the following formula for the Fibonacci numbers: 

Fk 
1
5
 1


5

2

k
 1

5
 1


5

2

k

The formula,  today,  is  known as  Binet's  formula.   Below,  we will  develop  this  formula  within  the  framework of

difference equations.    

A. de Moivre 1667 1754 L. Euler 1707 1783 J. P. M. Binet 1786 1856

 

In case that the reader is doubtful that the formula is correct (which is perfectly plausible, regarding the complexity of

the formula and in particular the embedded root expressions), here is a preliminary test:  
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Table
1


5






1 


5


2







k


1


5






1 


5


2







k

, k, 1, 15

 1 5

2 5


1 5

2 5

, 
1 5 2


4 5

1 5 2


4 5
, 

1 5 3


8 5

1 5 3


8 5
,


1 5 4

16 5


1 5 4

16 5

, 
1 5 5

32 5


1 5 5

32 5

, 
1 5 6

64 5


1 5 6

64 5

,


1 5 7

1285


1 5 7

1285

, 
1 5 8

256 5


1 5 8

256 5

, 
1 5 9

512 5


1 5 9

512 5

,


1 5 10

10245


1 5 10

10245

, 
1 5 11

20485


1 5 11

20485

, 
1 5 12

4096 5


1 5 12

4096 5

,


1 5 13

81925


1 5 13

81925

, 
1 5 14

163845


1 5 14

163845

, 
1 5 15

327685


1 5 15

327685



TableSimplify
1


5






1 


5


2







k


1


5






1 


5


2







k

, k, 1, 15

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610

TableN
1


5






1 


5


2







k


1


5






1 


5


2







k

, k, 1, 15

1., 1., 2., 3., 5., 8., 13., 21., 34., 55., 89., 144., 233., 377., 610.

 Terminology

In this section we will consider the following linear difference equation of oder 2 with constant coefficients and constant

inhomogeneity

A2  yk2  A1  yk1  A0  yk  0        (where  A0, A1  and  A2  are fixed constants;  A2  0) 

Since  A2  0  we can divide this equation by  A2  and obtain the somewhat simpler but equivalent form  

yk2  a1  yk1  a0  yk  0 (* GFE *)     

This equation clearly generalizes the Fibonacci equation; we will, therefore, call it the generalized Fibonacci equation 

(GFE)  for short. 

 Applying standard methodology 

Usually in mathematics (and elsewhere) it is more difficult to solve a generalized form of a specific problem than to

solve  the  specific  problem itself,  for  the  solution of the  generalized problem contains the  solution of  the  specific

problem.  Sometimes, however, the solution of the more general problem turns out to be easier than the solution of the

specific problem  –  thus supporting the dictum

 "be wise, generalize".  
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Obtaining a closed form representation for the Fibonacci numbers is a striking illustration of this fact.  It will turn out to

be simpler and more natural to solve the generalized Fibonacci equation than the original (special) Fibonacci equation.    

A general strategy in mathematical problem solving is to try to reduce a new, unknown situation to well-known cases.

In this way, we will try to convert the generalized Fibonacci equation (of order 2) into two annuity equations (of order

1).  If we succeed, we can hope combine the closed form representations of these annuity equations into a closed form

representation of the generalized Fibonacci equation.    

 First attempt  

The generalized Fibonacci equation might, for instance, be thought of as the "addition" of the following two first-order

equations:  

yk2 
1
2
a1  yk1  0  

1
2
a1  yk1  a0  yk  0 

Exercise:  Convert each of these two first-order equations into the standard form for geometric sequences and show that

they, in general, have no common solution (i.e. no common closed form representation). 

 Second attempt:  Introducing new parameters for greater flexibility (in this case: introducing a 
"tuning" parameter)  

Due to this result we have to handle the decomposition in a slightly more subtle way by introducing an extra parameter

called  t  (for "tuning") in the following way.  

yk2  a1  t  yk1  0  

       t  yk1  a0  yk  0

Still, GFE can be thought of as being the sum of these first-order equations.  If, by choosing a suitable "tuning" value for

t, we can make these two first-order equations identical, then they will have the same closed form representations and

we can try to combine their individual solutions into a solution for the generalized Fibonacci equation. 

Written in the "standard" form for geometric sequences the last two first-order equations read

 Tuning process - with the goal to make the two equations identical 

yk2  a1  t  yk1  (* GS-1 *)  

yk1 
a0
t
 yk    (* GS-2 *)  

These difference equations for geometric sequences are identical if their coefficients  a1  t  and  a0
t

  are equal.

(The "index-shift" by 1 is irrelevant, since the equations are valid for all values of  k).

A necessary condition for equality, hence, is 

a1  t  a0
t
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i.e.

t2  a1  t  a0  0

 The characteristic polynomial 

Thus, the above geometric sequences are identical if the "tuning" parameter  t   satisfies the so-called characteristic

equation of (* GFE *):  

x2  a1  x  a0  0

We finally obtain the tuning parameters   

 t1 
a1

a1
24a0

2

 t2 
a1

a1
24a0

2

In Mathematica notation:  

Solvet^2  a1t  a0  0, t

t  1

2
a1 4 a0  a12 , t  1


2
a1 4 a0  a12 

 Solutions - by applying the results on geometric series 

Thus, the geometric sequences adding up to (* GFE *) are 

1.  By using the root  t1: 

yk2  



a1 

a1
a1

24a0
2




  yk1  

yk1 
a0

a1


a124a02

 yk

2.  By using the root  t2: 

yk2  



a1 

a1
a1

24a0
2




  yk1  

yk1 
a0

a1


a124a02

 yk

Exercise:  Simplify these formulae. 

 Vieta's formulae  

Excursion:  Vieta's formulae  
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The tuning parameters  t1  and  t2, being the roots of the quadratic equation  

x2  a1  x  a0  0

must satisfy Vieta's equations:  

t1  t2  a1   and    t1  t2  a0

Thus, by substituting either  t1  or  t2  for  t  and applying Vieta's formulae we can rewrite  (* GS-1 *)  and  (GS-2 *)  in

the following way:  

yk2  t1  yk1  (* GS-1.1 *)  

yk2  t2  yk1  (* GS-1.2 *)  

yk1  t1  yk    (* GS-2.1 *)  

yk1  t2  yk    (* GS-2.2 *)  

By pure combinatorics, substituting two roots into two equations formally gives four cases, but by algebra (Vieta) these

melt down to two essentially different cases.   

 Results

Theorem (solutions of the generalized Fibonacci equation)   

(cf. [Dürr / Ziegenbalg 1989], Satz 13.1, page 90)

The generalized Fibonacci equation   

yk2  a1  yk1  a0  yk  0

has the following "solutions" (i.e. closed form representations):   

(a1) yk 




a1

a1
24a0

2





k

  

and 

(a2) yk 




a1

a1
24a0

2






k

Obtaining more solutions:  

Theorem (combining solutions)   

If the sequences 

ukk0,...,   and   vkk0,...,
are solutions of the generalized Fibonacci equation   

yk2  a1  yk1  a0  yk  0

then their "sum" 

(a1) ukk0,..., vkk0,..., : uk  vkk0,...,  
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and for any real number  C  the "scalar multiple"  

(a2) C ukk0,..., : C ukk0,...,
also are solutions of the generalized Fibonacci equation.  

Proof:  Exercise 

Henceforth we will use the simpler operation symbols  +  and  ·  instead of     and  . 

Corollary (linear combination of solutions): 

If the sequences 

ukk0,...,   and   vkk0,...,
are solutions of the generalized Fibonacci equation   

yk2  a1  yk1  a0  yk  0

then for any real numbers  C1  and  C2  the "linear combination" 

C1  ukk0,..., C2  vkk0,...,   

also are solutions of the generalized Fibonacci equation.  

Corollary 

The generalized Fibonacci equation   

yk2  a1  yk1  a0  yk  0

has the following "solutions" (i.e. closed form representations):   

C1 




a1

a1
24a0

2





k

C2 




a1

a1
24a0

2





k

  (* S-GFE *)

where  C1  and  C2  are arbitrary real (or complex) numbers.  

In other words:  The set of all solutions of the generalized Fibonacci equation is a vector space over a suitable scalar

field (i.e. usually the field the coefficients are taken from); cf. [Dürr / Ziegenbalg 1989], Satz 14.1, page 91.  

Furthermore, it is not difficult to see that the dimension of this vector space is 2 and that, in case the solutions  t1  and  t2
of GFE's characteristic equation do not coincide, then the sequences  t1k  and  t2k   are a basis of this vector space.   

 Initial values 

The above results were valid independent of any initial values  y0  and  y1  of the GFE.  Let us now assume that the

solution (* S-GFE *), additionally, is to satisfy these initial values.  Then for  k  0  and  k  1  the following two linear

equations will have to be satisfied by  C1  and  C2:

Corollary 

The initial values of the generalized Fibonacci equation   

yk2  a1  yk1  a0  yk  0

can be expressed in the following way:   

C1 




a1

a1
24a0

2






0

C2 




a1

a1
24a0

2






0

 y0  (* LE-1 *) 
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C1 




a1

a1
24a0

2





1

C2 




a1

a1
24a0

2





1

 y1 (* LE-2 *)  

i.e. 

C1 C2  y0  

C1 
a1

a1
24a0

2
C2 

a1
a1

24a0
2

 y1  

Notwithstanding the algebraic complexity of these equations, they are two simple linear equations in the two unknowns

C1  and  C2  which can be solved by straightforward algebraic procedures.  

Exercise:  Show that 

C1  
a1 y0

4 a0a1
2 y02 y1

24 a0a1
2

  

and  

C2  
a1 y0

4 a0a1
2 y02 y1

24 a0a1
2

  

are solutions of  (* LE-1 *)  and  (* LE-2 *).  

 Applying the results to the sequence of the standard Fibonacci numbers - 
Binet's formula 

The sequence of the standard Fibonacci numbers, equivalently either starting with index  0  or index  1  is given by 

y0 y1

0 1

y2 y3

1 2

y4 y5

3 5

y6 y7

8 13


...

...

Specializing from GFE, its parameters are:  

a1  1    and    a0  1.  

Hence, the homogeneous equation 

yk2  yk1  yk  0   

has the "general" solution 

yk  C1 




a1

a1
24a0

2





k

C2 




a1

a1
24a0

2





k

   

i.e.  

yk  C1   1


5
2


k
C2   1


5

2

k
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 Putting it all together using Mathematica's "symbol manipulation" features 

Solve C1  C2  y0, C1 






a1 

a12  4a0


2






 C2 







a1 

a12  4a0


2






 y1, C1, C2

Solve0  y0, 
a1 

4 a0  a1
2


2 5


a1 

4 a0  a1
2


2 5

 y1,  1
5

, 
1

5


C1  
a1 y0 


4 a0  a1

2 y0  2 y1


2
4 a0  a1

2


a1 y0 

4 a0  a1
2 y0  2 y1


24 a0  a1

2

C1  
a1 y0 


4 a0  a1

2 y0  2 y1


2

4 a0  a1

2
. a0  1, a1  1, y0  0, y1  1

1
5

C2  
a1 y0 


4 a0  a1

2 y0  2 y1


2

4 a0  a1

2


a1 y0 

4 a0  a1
2 y0  2 y1


24 a0  a1

2

C2  
a1 y0 


4 a0  a1

2 y0  2 y1


2
4 a0  a1

2
. a0  1, a1  1, y0  0, y1  1


1

5

 Binet's Formula 

Theorem (Binet)   

The Fibonacci equation   

yk2  yk1  yk

has the following "solution" (i.e. closed form representations):   

yk 
1
5
  1


5

2

k
 1

5
  1


5

2

k

Check
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yk 
1


5







1 


5


2







k


1


5







1 


5


2







k


 1
2
1 5 k

5

 1
2
1 5 k

5

Tablek,
1


5







1 


5


2







k


1


5







1 


5


2







k

, k, 0, 5

0, 0, 1, 
1 5

2 5


1 5

2 5

,

2, 
1 5 2


4 5

1 5 2


4 5
, 3, 

1 5 3


8 5

1 5 3


8 5
,

4, 
1 5 4

16 5


1 5 4

16 5

, 5, 
1 5 5

32 5


1 5 5

32 5



TableSimplifyk,
1


5







1 


5


2







k


1


5







1 


5


2







k

, k, 0, 5

0, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 5

Tablek,
1


5






1 


5


2







k


1


5






1 


5


2







k

 N, k, 0, 25

0, 0., 1, 1., 2, 1., 3, 2., 4, 3., 5, 5., 6, 8., 7, 13.,
8, 21., 9, 34., 10, 55., 11, 89., 12, 144., 13, 233., 14, 377.,
15, 610., 16, 987., 17, 1597., 18, 2584., 19, 4181., 20, 6765.,
21, 10946., 22, 17711., 23, 28657., 24, 46368., 25, 75025.
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%  TableForm

0 0.
1 1.
2 1.
3 2.
4 3.
5 5.
6 8.
7 13.
8 21.
9 34.
10 55.
11 89.
12 144.
13 233.
14 377.
15 610.
16 987.
17 1597.
18 2584.
19 4181.
20 6765.
21 10946.
22 17711.
23 28657.
24 46368.
25 75025.

 Applying genuine computeralgebra features

Tablek,
1


5






1 


5


2







k


1


5






1 


5


2







k

, k, 0, 10

0, 0, 1, 
1 5

2 5


1 5

2 5

, 2, 
1 5 2


4 5

1 5 2


4 5
,

3, 
1 5 3


8 5

1 5 3


8 5
, 4, 

1 5 4

16 5


1 5 4

16 5

,

5, 
1 5 5

32 5


1 5 5

32 5

, 6, 
1 5 6

64 5


1 5 6

64 5

,

7, 
1 5 7

128 5


1 5 7

128 5

, 8, 
1 5 8

256 5


1 5 8

256 5

,

9, 
1 5 9

512 5


1 5 9

512 5

, 10, 
1 5 10

1024 5


1 5 10

1024 5



%  Simplify

0, 0, 1, 1, 2, 1, 3, 2, 4, 3,
5, 5, 6, 8, 7, 13, 8, 21, 9, 34, 10, 55
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 RSolve for GFE

Removey, y0, y1, a0, a1

RSolving the GFE: 

RSolveyk  2  a1yk  1  a0 yk  0, y0  y0, y1  y1, yk, k

yk  1

4 a0  a12





21k 


a1 a1 4 a0  a12 

k
y0 4 a0  a12 a1 4 a0  a12 

k
y0 

a1 a1 4 a0  a12 
k
y0 4 a0  a12 a1 4 a0  a12 

k
y0 

2 a1 4 a0  a12 
k
y1  2 a1 4 a0  a12 

k
y1






RSolving the original Fibonacci equation: 

RSolveyk  2  yk  1  yk  0, y0  0, y1  1, yk, k

yk  
 1
2


5
2


k
  1

2


5
2


k

5


 Auxiliary stuff   
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