Fibonacci Numbers and Binet's Formula
 Roadmap (Überblick)

Autor: Jochen Ziegenbalg
Email: ziegenbalg.edu@gmail.com
Internet: https://jochen-ziegenbalg.github.io/materialien/

■ The generalized Fibonacci equation

- 0. A remark on the historical development

In his Liber abaci (1202), Leonardo of Pisa (called Fibonacci, ca. 1170-1250) formulated a problem giving rise to the following famous sequence of numbers now called the "Fibonacci" numbers:

$$
1,1,2,3,5,8,13,21,34,55,89, \ldots
$$

Its most important property is that every member of the sequence is the sum of its two immediate predecessors (except for the initial values):

$$
F_{k+2}=F_{k+1}+F_{k}
$$

It took several centuries until J. P. M. Binet (1786-1856) finally presented the following formula for the Fibonacci numbers:

$$
F_{k}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k}
$$

- 1. Generalisation

$$
\begin{equation*}
y_{k+2}+a_{1} \cdot y_{k+1}+a_{0} \cdot y_{k}=0 \tag{*GFE*}
\end{equation*}
$$

This equation clearly generalizes the Fibonacci equation; we will, therefore, call it the generalized Fibonacci equation (GFE) for short.

- 2. Applying standard methodology: Introducing new parameters (in this case: a "tuning" parameter)

Due to this result we have to handle the decomposition in a slightly more subtle way by introducing an extra parameter called t (for "tuning") in the following way.

$$
\begin{aligned}
& y_{k+2}+\left(a_{1}+t\right) \cdot y_{k+1}=0 \\
& -t \cdot y_{k+1}+a_{0} \cdot y_{k}=0
\end{aligned}
$$

GFE can be thought of as being the sum of these first-order equations. If, by choosing a suitable "tuning" value for t, we can make these two first-order equations identical, then they will have the same closed form representations and we can try to combine their individual solutions into a solution for the generalized Fibonacci equation.

- 3. The tuning process

Written in the "standard" form for geometric sequences the last two first-order equations read

$$
\begin{align*}
& y_{k+2}=-\left(a_{1}+t\right) \cdot y_{k+1} \tag{*GS-1*}\\
& y_{k+1}=\frac{a_{0}}{t} \cdot y_{k} \tag{2*}
\end{align*}
$$

These difference equations for geometric sequences are identical if their coefficients $-\left(a_{1}+t\right)$ and $\frac{a_{0}}{t}$ are equal. (The "index-shift" by 1 is irrelevant, since the equations are valid for all values of k).
A necessary condition for equality, hence, is

$$
-\left(a_{1}+t\right)=\frac{a_{0}}{t}
$$

- 4. The characteristic polynomial

$$
t^{2}+a_{1} \cdot t+a_{0}=0
$$

Thus, the above geometric sequences are identical if the "tuning" parameter t satisfies the so-called characteristic equation of (* GFE *):

$$
x^{2}+a_{1} \cdot x+a_{0}=0
$$

We finally obtain the tuning parameters

$$
\begin{aligned}
& t_{1}=\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{0}}}{2} \\
& t_{2}=\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{0}}}{2}
\end{aligned}
$$

- 5. Solutions - by applying the results on geometric series

Thus, the geometric sequences adding up to (* GFE *) are

1. By using the root t_{1} :

$$
\begin{aligned}
& y_{k+2}=-\left(a_{1}+\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right) \cdot y_{k+1} \\
& y_{k+1}=\frac{a_{0}}{\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{0}}}{2}} \cdot y_{k}
\end{aligned}
$$

2. By using the root t_{2} :

$$
\begin{aligned}
& y_{k+2}=-\left(a_{1}+\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right) \cdot y_{k+1} \\
& y_{k+1}=\frac{a_{0}}{\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{0}}}{2}} \cdot y_{k}
\end{aligned}
$$

- 6. Vieta's formulae

The tuning parameters t_{1} and t_{2}, being the roots of the quadratic equation

$$
x^{2}+a_{1} \cdot x+a_{0}=0
$$

must satisfy Vieta's equations:

$$
t_{1}+t_{2}=-a_{1} \quad \text { and } \quad t_{1} \cdot t_{2}=a_{0}
$$

Thus, by substituting either t_{1} or t_{2} for t and applying Vieta's formulae we can rewrite (* GS-1 *) and (GS-2 *) in the following way:

$$
\begin{align*}
& y_{k+2}=t_{1} \cdot y_{k+1} \tag{*GS-1.1*}\\
& y_{k+2}=t_{2} \cdot y_{k+1} \tag{*GS-1.2*}\\
& y_{k+1}=t_{1} \cdot y_{k} \tag{*GS-2.1*}\\
& y_{k+1}=t_{2} \cdot y_{k}
\end{align*}
$$

(* GS-2.2 *)

By pure combinatorics, substituting two roots into two equations formally gives four cases, but by algebra (Vieta) these melt down to two essentially different cases.

- 7. Results

Theorem (solutions of the generalized Fibonacci equation)
(cf. [DZ 1989], Satz 13.1, page 90)
The generalized Fibonacci equation

$$
y_{k+2}+a_{1} \cdot y_{k+1}+a_{0} \cdot y_{k}=0
$$

has the following "solutions" (i.e. closed form representations):
(a1) $y_{k}=\left(\frac{-a_{1}+\sqrt{a_{1}{ }^{2}-4 a_{0}}}{2}\right)^{k}$
and
(a2) $y_{k}=\left(\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right)^{k}$

- 8. Obtaining more solutions

Theorem (combining solutions)

If the sequences

$$
\left(u_{k}\right)_{k=0, \ldots, \infty} \text { and }\left(v_{k}\right)_{k=0, \ldots, \infty}
$$

are solutions of the generalized Fibonacci equation

$$
y_{k+2}+a_{1} \cdot y_{k+1}+a_{0} \cdot y_{k}=0
$$

then their "sum"
(a1) $\quad\left(u_{k}\right)_{k=0, \ldots, \infty} \oplus\left(v_{k}\right)_{k=0, \ldots, \infty}:=\left(u_{k}+v_{k}\right)_{k=0, \ldots, \infty}$
and for any real number C the "scalar multiple"
(a2) $C \odot\left(u_{k}\right)_{k=0, \ldots, \infty}:=\left(C \cdot u_{k}\right)_{k=0, \ldots, \infty}$
also are solutions of the generalized Fibonacci equation.

Henceforth we will use the simpler operation symbols + and \cdot instead of \oplus and \odot.

Corollary (linear combination of solutions):

If the sequences

$$
\left(u_{k}\right)_{k=0, \ldots, \infty} \text { and }\left(v_{k}\right)_{k=0, \ldots, \infty}
$$

are solutions of the generalized Fibonacci equation

$$
y_{k+2}+a_{1} \cdot y_{k+1}+a_{0} \cdot y_{k}=0
$$

then for any real numbers C_{1} and C_{2} the "linear combination"

$$
C_{1} \cdot\left(u_{k}\right)_{k=0, \ldots, \infty}+C_{2} \cdot\left(v_{k}\right)_{k=0, \ldots, \infty}
$$

also are solutions of the generalized Fibonacci equation.

Corollary

The generalized Fibonacci equation

$$
y_{k+2}+a_{1} \cdot y_{k+1}+a_{0} \cdot y_{k}=0
$$

has the following "solutions" (i.e. closed form representations):

$$
\begin{equation*}
C_{1} \cdot\left(\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right)^{k}+C_{2} \cdot\left(\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right)^{k} \tag{*S-GFE*}
\end{equation*}
$$

where C_{1} and C_{2} are arbitrary real (or complex) numbers.

In other words: The set of all solutions of the generalized Fibonacci equation is a vector space over a suitable scalar field (usually the field the coefficients are taken from); cf. [DZ 1989], Satz 14.1, page 91.
Furthermore, it is not difficult to see that the dimension of this vector space is 2 and that, in case the solutions t_{1} and t_{2} of GFE's characteristic equation do not coincide, then the sequences $\left(t_{1}\right)^{k}$ and $\left(t_{2}\right)^{k}$ are a basis of this vector space.

- 9. Initial values

The above results were valid independent of any initial values y_{0} and y_{1} of the GFE. Let us now assume that the solution (* S-GFE *), additionally, is to satisfy these initial values. Then for $k=0$ and $k=1$ the following two linear equations will have to be satisfied by C_{1} and C_{2} :

Corollary

The initial values of the generalized Fibonacci equation

$$
y_{k+2}+a_{1} \cdot y_{k+1}+a_{0} \cdot y_{k}=0
$$

can be expressed in the following way:

$$
\begin{align*}
& C_{1} \cdot\left(\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right)^{0}+C_{2} \cdot\left(\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right)^{0}=y_{0} \tag{*LE-1*}\\
& C_{1} \cdot\left(\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right)^{1}+C_{2} \cdot\left(\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right)^{1}=y_{1} \tag{*LE-2*}
\end{align*}
$$

i.e.

$$
\begin{aligned}
& C_{1}+C_{2}=y_{0} \\
& C_{1} \cdot \frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{0}}}{2}+C_{2} \cdot \frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{0}}}{2}=y_{1}
\end{aligned}
$$

Notwithstanding the algebraic complexity of these equations, they are two simple linear equations in the two unknowns C_{1} and C_{2} which can be solved by straightforward algebraic procedures.

Exercise: Show that

$$
C_{1}=-\frac{-a_{1} y_{0}-\sqrt{-4 a_{0}+a_{1}^{2}} y_{0}-2 y_{1}}{2 \sqrt{-4 a_{0}+a_{1}^{2}}}
$$

and

$$
C_{2}=-\frac{a_{1} y_{0}-\sqrt{-4 a_{0}+a_{1}^{2}} y_{0}+2 y_{1}}{2 \sqrt{-4 a_{0}+a_{1}^{2}}}
$$

are solutions of (* LE-1 *) and (* LE-2 *).

- 10. Applying the results to the sequence of the standard Fibonacci numbers Binet's formula

The sequence of the standard Fibonacci numbers, equivalently either starting with index 0 or index 1 is given by

y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	\ldots
0	1	1	2	3	5	8	13	\ldots

Specializing from GFE, its parameters are:

$$
a_{1}=-1 \quad \text { and } \quad a_{0}=-1
$$

Hence, the homogeneous equation

$$
y_{k+2}-y_{k+1}-y_{k}=0
$$

has the "general" solution

$$
y_{k}=C_{1} \cdot\left(\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right)^{k}+C_{2} \cdot\left(\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{0}}}{2}\right)^{k}
$$

i.e.

$$
\begin{aligned}
& y_{k}=C_{1} \cdot\left(\frac{1+\sqrt{5}}{2}\right)^{k}+C_{2} \cdot\left(\frac{1-\sqrt{5}}{2}\right)^{k} \\
& \left\{\left\{C_{1} \rightarrow-\frac{-a_{1} Y_{0}-\sqrt{-4 a_{0}+a_{1}^{2}} y_{0}-2 y_{1}}{2 \sqrt{-4 a_{0}+a_{1}^{2}}}, C_{2} \rightarrow-\frac{a_{1} Y_{0}-\sqrt{-4 a_{0}+a_{1}^{2}} y_{0}+2 y_{1}}{2 \sqrt{-4 a_{0}+a_{1}^{2}}}\right\}\right\} \\
& C_{1}=-\frac{-a_{1} y_{0}-\sqrt{-4 a_{0}+a_{1}^{2}} y_{0}-2 y_{1}}{2 \sqrt{-4 a_{0}+a_{1}^{2}}} / .\left\{a_{0} \rightarrow-1, a_{1} \rightarrow-1, y_{0} \rightarrow 0, y_{1} \rightarrow 1\right\} \\
& \frac{1}{\sqrt{5}} \\
& C_{2}=-\frac{a_{1} y_{0}-\sqrt{-4 a_{0}+a_{1}^{2}} y_{0}+2 y_{1}}{2 \sqrt{-4 a_{0}+a_{1}^{2}}} \\
& -\frac{1}{\sqrt{5}}
\end{aligned}
$$

- 11. Binet's Formula

Theorem (Binet)

The Fibonacci equation

$$
y_{k+2}=y_{k+1}+y_{k}
$$

has the following "solution" (i.e. closed form representations):

$$
y_{k}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k}
$$

- 12. Check

> Table $\left[\right.$ Simplify $\left.\left[\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{\mathbf{k}}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{\mathbf{k}}\right],\{\mathbf{k}, 0,30\}\right]$
> $\{0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181$, $6765,10946,17711,28657,46368,75025,121393,196418,317811,514229,832040\}$

