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  The generalized Fibonacci equation 

 0. A remark on the historical development 

In his Liber abaci (1202), Leonardo of Pisa (called Fibonacci, ca. 1170 - 1250) formulated a problem giving rise to the

following famous sequence of numbers now called the "Fibonacci" numbers: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...  

Its most important property is that every member of the sequence is the sum of its two immediate predecessors (except

for the initial values):   

Fk2  Fk1  Fk

It  took several  centuries until  J. P. M. Binet  (1786-1856) finally presented the following formula for  the Fibonacci

numbers: 

Fk 
1
5
 1


5

2

k
 1

5
 1


5

2

k

 1. Generalisation  

yk2  a1  yk1  a0  yk  0 (* GFE *)     

This equation clearly generalizes the Fibonacci equation; we will, therefore, call it the generalized Fibonacci equation 

(GFE)  for short. 

 2. Applying standard methodology:  Introducing new parameters (in this case: a "tuning" 
parameter)  

Due to this result we have to handle the decomposition in a slightly more subtle way by introducing an extra parameter

called  t  (for "tuning") in the following way.  

yk2  a1  t  yk1  0  

       t  yk1  a0  yk  0
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GFE can be thought of as being the sum of these first-order equations.  If, by choosing a suitable "tuning" value for t, we

can make these two first-order equations identical, then they will have the same closed form representations and we can

try to combine their individual solutions into a solution for the generalized Fibonacci equation. 

 3. The tuning process   

Written in the "standard" form for geometric sequences the last two first-order equations read

yk2  a1  t  yk1  (* GS-1 *)  

yk1 
a0
t
 yk    (* GS-2 *)  

These difference equations for geometric sequences are identical if their coefficients  a1  t  and  a0
t

  are equal.

(The "index-shift" by 1 is irrelevant, since the equations are valid for all values of  k).

A necessary condition for equality, hence, is 

a1  t  a0
t

 4. The characteristic polynomial 

t2  a1  t  a0  0

Thus, the above geometric sequences are identical if the "tuning" parameter  t   satisfies the so-called characteristic

equation of (* GFE *):  

x2  a1  x  a0  0

We finally obtain the tuning parameters   

 t1 
a1

a1
24a0

2

 t2 
a1

a1
24a0

2

 5. Solutions - by applying the results on geometric series 

Thus, the geometric sequences adding up to (* GFE *) are 

1.  By using the root  t1: 

yk2  



a1 

a1
a1

24a0
2




  yk1  

yk1 
a0

a1


a124a02

 yk
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2.  By using the root  t2: 

yk2  



a1 

a1
a1

24a0
2




  yk1  

yk1 
a0

a1


a124a02

 yk

 6. Vieta's formulae  

The tuning parameters  t1  and  t2, being the roots of the quadratic equation  

x2  a1  x  a0  0

must satisfy Vieta's equations:  

t1  t2  a1   and    t1  t2  a0

Thus, by substituting either  t1  or  t2  for  t  and applying Vieta's formulae we can rewrite  (* GS-1 *)  and  (GS-2 *)  in

the following way:  

yk2  t1  yk1  (* GS-1.1 *)  

yk2  t2  yk1  (* GS-1.2 *)  

yk1  t1  yk    (* GS-2.1 *)  

yk1  t2  yk    (* GS-2.2 *)  

By pure combinatorics, substituting two roots into two equations formally gives four cases, but by algebra (Vieta) these

melt down to two essentially different cases.   

 7. Results

Theorem (solutions of the generalized Fibonacci equation)   

(cf. [DZ 1989], Satz 13.1, page 90)

The generalized Fibonacci equation   

yk2  a1  yk1  a0  yk  0

has the following "solutions" (i.e. closed form representations):   

(a1) yk 




a1

a1
24a0

2






k

  

and 

(a2) yk 




a1

a1
24a0

2






k
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 8. Obtaining more solutions 

Theorem (combining solutions)   

If the sequences 

ukk0,...,   and   vkk0,...,
are solutions of the generalized Fibonacci equation   

yk2  a1  yk1  a0  yk  0

then their "sum" 

(a1) ukk0,..., vkk0,..., : uk  vkk0,...,  

and for any real number  C  the "scalar multiple"  

(a2) C ukk0,..., : C ukk0,...,
also are solutions of the generalized Fibonacci equation.  

Henceforth we will use the simpler operation symbols  +  and  ·  instead of     and  . 

Corollary (linear combination of solutions): 

If the sequences 

ukk0,...,   and   vkk0,...,
are solutions of the generalized Fibonacci equation   

yk2  a1  yk1  a0  yk  0

then for any real numbers  C1  and  C2  the "linear combination" 

C1  ukk0,..., C2  vkk0,...,   

also are solutions of the generalized Fibonacci equation.  

Corollary 

The generalized Fibonacci equation   

yk2  a1  yk1  a0  yk  0

has the following "solutions" (i.e. closed form representations):   

C1 




a1

a1
24a0

2






k

C2 




a1

a1
24a0

2






k

  (* S-GFE *)

where  C1  and  C2  are arbitrary real (or complex) numbers.  

In other words:  The set of all solutions of the generalized Fibonacci equation is a vector space over a suitable scalar

field (usually the field the coefficients are taken from); cf. [DZ 1989], Satz 14.1, page 91.  

Furthermore, it is not difficult to see that the dimension of this vector space is 2 and that, in case the solutions  t1  and  t2
of GFE's characteristic equation do not coincide, then the sequences  t1k  and  t2k   are a basis of this vector space.   

 9. Initial values 

The above results were valid independent of any initial values  y0  and  y1  of the GFE.  Let us now assume that the

solution (* S-GFE *), additionally, is to satisfy these initial values.  Then for  k  0  and  k  1  the following two linear

equations will have to be satisfied by  C1  and  C2:
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Corollary 

The initial values of the generalized Fibonacci equation   

yk2  a1  yk1  a0  yk  0

can be expressed in the following way:   

C1 




a1

a1
24a0

2






0

C2 




a1

a1
24a0

2






0

 y0  (* LE-1 *) 

C1 




a1

a1
24a0

2





1

C2 




a1

a1
24a0

2





1

 y1 (* LE-2 *)  

i.e. 

C1 C2  y0  

C1 
a1

a1
24a0

2
C2 

a1
a1

24a0
2

 y1  

Notwithstanding the algebraic complexity of these equations, they are two simple linear equations in the two unknowns

C1  and  C2  which can be solved by straightforward algebraic procedures.  

Exercise:  Show that 

C1  
a1 y0

4 a0a1
2 y02 y1

24 a0a1
2

  

and  

C2  
a1 y0

4 a0a1
2 y02 y1

24 a0a1
2

  

are solutions of  (* LE-1 *)  and  (* LE-2 *).  

 10. Applying the results to the sequence of the standard Fibonacci numbers - 
Binet's formula 

The sequence of the standard Fibonacci numbers, equivalently either starting with index  0  or index  1  is given by 

y0 y1

0 1

y2 y3

1 2

y4 y5

3 5

y6 y7

8 13


...

...

Specializing from GFE, its parameters are:  

a1  1    and    a0  1.  

Hence, the homogeneous equation 

yk2  yk1  yk  0   

has the "general" solution 

yk  C1 




a1

a1
24a0

2






k

C2 




a1

a1
24a0

2






k
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i.e.  

yk  C1   1


5
2


k
C2   1


5

2

k

C1  
a1 y0 

4 a0  a1
2 y0  2 y1


24 a0  a1

2
, C2  

a1 y0 
4 a0  a1

2 y0  2 y1


24 a0  a1
2



C1  
a1 y0 


4 a0  a1

2 y0  2 y1


2

4 a0  a1

2
. a0  1, a1  1, y0  0, y1  1

1
5

C2  
a1 y0 


4 a0  a1

2 y0  2 y1


2
4 a0  a1

2
. a0  1, a1  1, y0  0, y1  1


1

5

 11. Binet's Formula 

Theorem (Binet)   

The Fibonacci equation   

yk2  yk1  yk

has the following "solution" (i.e. closed form representations):   

yk 
1
5
 1


5

2

k
 1

5
 1


5

2

k

 12.  Check 

TableSimplify
1


5






1 


5


2







k


1


5






1 


5


2







k

, k, 0, 30

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,
6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040
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